Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian Toán 12 - Lê Quang Xe

Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.

Nguồn: toanmath.com

Đọc Sách

Bài toán VD - VDC tỉ số thể tích - Nguyễn Công Định
Tài liệu gồm 69 trang, được biên soạn bởi thầy giáo Nguyễn Công Định (giáo viên Toán trường THTP Đầm Dơi, tỉnh Cà Mau), hướng dẫn giải 57 bài tập trắc nghiệm tỉ số thể tích mức độ vận dụng – vận dụng cao (VD – VDC), giúp học sinh học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi THPT Quốc gia môn Toán. Bài toán 1: Tỉ số thể tích hình chóp tam giác. Bài toán 2: Tỉ số thể tích hình chóp tứ giác có đáy là hình bình hành. Bài toán 3: Tỉ số thể tích hình chóp lăng trụ tam giác. Bài toán 4: Tỉ số thể tích hình hộp. Kiến thức khác: Tỉ số thể tích hình chóp chung đỉnh hoặc chung đáy. Xem thêm : + Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết + Sử dụng phương pháp tỉ số thể tích giải quyết bài toán thể tích khối đa diện – Nguyễn Ngọc Dũng
Thể tích trong phân chia khối đa diện
Tài liệu gồm 54 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC, hướng dẫn giải bài toán tính thể tích trong phân chia khối đa diện. Trong các bài toán thể tích khối đa diện diện, một số bài toán vận dụng hoặc vận dụng cao thường đề cập đến việc phân chia đa diện, tính thể tích khối đa diện mới theo thể tích khối đa diện đã cho. Thầy cô cần tạo tình huống cho học trò có tư duy về việc so sánh thể tích các khối chóp, khối lăng trụ từ những tư duy đơn giản như so sánh đường cao, so sánh diện tích đáy để đi đến quyết định chuyển những khối đa diện khó tính thể tích thành những khối dễ hơn, dễ so sánh với khối ban đầu. Cũng cần tạo cho học sinh quen với các bài toán tính thể tích các khối không cơ bản như chóp hoặc lăng trụ bằng cách phân chia thể tích với yêu cầu học sinh quan sát tốt để phân chia khối đa diện thành những khối dễ tính hơn với giả thiết được cho, từ đó hình thành các kĩ năng tổng hợp và có phản xạ tốt trong những bài phân chia đa diện. Trong phần thể tích khối đa diện việc ra đề và ôn tập cho học sinh thường được chú trọng đến các bài toán về phân chia khối đa diện thành các phần khác nhau. Việc phân chia và tính toán khối đa diện thường dựa vào tỷ số thể tích, dựa vào việc dựng thiết diện, dựa vào việc lấy thêm điểm thỏa mãn các hệ thức tỷ số hoặc vectơ. [ads] A. CÁC CÔNG THỨC TỈ SỐ THỂ TÍCH ÁP DỤNG B. CÁC DẠNG BÀI VÀ VÍ DỤ MINH HỌA + Bài toán 1. Chia hình chóp, hình lăng trụ thành 2 phần bởi một mặt phẳng cho trước. Tính thể tích một trong hai phần hay tỉ số thể tích. + Bài toán 2. Tính thể tích khối đa diện được phát trển từ các khối cho trước bằng cách lấy thêm các điểm. + Bài toán 3. Giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) thể tích các khối khi phân chia. C. BÀI TẬP THEO CÁC DẠNG + Dạng toán 1. Chia hình chóp, hình lăng trụ thành 2 phần bởi một mặt phẳng cho trước. Tính thể tích một trong hai phần hay tỉ số thể tích. + Dạng toán 2. Chia hình chóp, hình lăng trụ thành các khối đa diện khác nhau bởi việc lấy thêm các điểm thỏa mãn điều kiện cho trước. Tính thể tích một trong hai khối đó. + Dạng toán 3. Giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) thể tích các khối khi phân chia. Xem thêm :  Thể tích khối đa diện phức hợp (VDC) – Đặng Việt Đông
Khối đa diện và thể tích của chúng - Huỳnh Đức Khánh
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Huỳnh Đức Khánh (chủ biên), tổng hợp các kiến thức cần ghi nhớ, phân dạng và tuyển chọn các bài toán trắc nghiệm thuộc chủ đề khối đa diện và thể tích của chúng, có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán năm học 2020 – 2021. Bài 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. + Dạng 1. Nhận biết hình đa diện + Dạng 2. Số mặt của hình đa diện. + Dạng 3. Số cạnh của hình đa diện. + Dạng 4. Số đỉnh của hình đa diện. + Dạng 5. Tâm đối xứng của hình đa điện. + Dạng 6. Trục đối xứng của hình đa diện. + Dạng 7. Mặt đối xứng của hình đa diện. + Dạng 8. Phân chia – lắp ghép khối đa diện. Bài 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. [ads] Bài 3 . THỂ TÍCH KHỐI ĐA DIỆN. + Dạng 1. Thể tích khối chóp cơ bản. + Dạng 2. Thể tích khối chóp khi biết chân đường cao. + Dạng 3. Thể tích khối chóp có cạnh bên tạo với đáy một góc cho trước. + Dạng 4. Thể tích khối chóp có mặt bên tạo với đáy một góc cho trước. + Dạng 5. Thể tích khối chóp – mức độ vận dụng. + Dạng 6. Thể tích lăng trụ đứng. + Dạng 7. Thể tích lăng trụ xiên. + Dạng 8. Tỉ số thể tích. + Dạng 9. Bài toán cực trị. + Dạng 10. Một số bài toán ứng dụng.
Tài liệu bồi dưỡng học sinh giỏi hình học không gian
Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.