Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tháng 4 năm 2021 môn Toán 12 trường THPT chuyên Bắc Giang

Nhằm ôn tập chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán, ngày … tháng 04 năm 2021, trường THPT chuyên Bắc Giang, tỉnh Bắc Giang tổ chức kỳ thi kiểm tra định kỳ môn Toán lớp 12 giai đoạn tháng 04 năm 2021. Đề thi tháng 4 năm 2021 môn Toán 12 trường THPT chuyên Bắc Giang mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi Nhóm Toán VD – VDC). Trích dẫn đề thi tháng 4 năm 2021 môn Toán 12 trường THPT chuyên Bắc Giang : + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại B, mặt bên SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Hai mặt phẳng SAB và SBC lần lượt tạo với đáy các góc 0 60 và 0 45, khoảng cách giữa hai đường thẳng SA và BC bằng a. Tính thể tích khối chóp S ABC theo a. + Cho bốn điểm A B C D. Trong các mệnh đề sau, mệnh đề nào sai? A. Tam giác ABD là tam giác đều. B. Bốn điểm A B C D tạo thành tứ diện. C. AB vuông góc với CD. D. Tam giác BCD là tam giác vuông. + Một quần thể vi khuẩn bắt đầu từ 100 cá thể và cứ su 3 giờ thì số cá thể lại tăng gấp đôi. Bởi vậy số cá thể vi khuẩn được biểu thị theo thời gian t (đơn vị: giờ) bằng công thức 3 100 2 t N t. Hỏi sau bao lâu thì quần thể này đạt tới 50000 cá thể (làm tròn đến hàng phần mười)? A. 36,8 giờ. B. 30,2 giờ. C. 26,9 giờ. D. 18,6 giờ.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường chuyên Sư Phạm Hà Nội lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường chuyên Sư Phạm Hà Nội lần 2 gồm 50 câu hỏi trắc nghiệm, đề thi có đáp án. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh huyền BC = 6cm, các cạnh bên cùng tạo với đáy một góc 60. Diện tích mặt cầu ngoại tiếp hình chóp S.ABC là? + Trên mặt phẳng tọa độ Oxy, xét tam giác vuông OAB với A chạy trên trục hoành và có hoành độ dương; B chạy trên trục tung và có tung độ âm sao cho OA + OB = 1. Hỏi thể tích lớn nhất của vật thể tạo thành khi quay tam giác AOB quanh trục Oy bằng bao nhiêu? + Một xưởng sản xuất những thùng bằng kẽm hình hộp chữ nhật không có nắp và có các kích thước x, y, z (dm). Biết tỉ số hai cạnh đáy là x:y = 1:3, thể tích của hộp bằng 18 lít. Để tốn ít vật liệu nhất thì kích thước của thùng là?
Đề thi rèn luyện THPT Quốc gia 2017 môn Toán trường THPT Hồng Ngự 2 - Đồng Tháp
Đề thi rèn luyện THPT Quốc gia 2017 môn Toán trường THPT Hồng Ngự 2 – Đồng Tháp gồm 50 câu hỏi trắc nghiệm, đề thi có đáp án và lời giải chi tiết. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy, góc giữa cạnh bên SC với mặt đáy bằng 60 độ. Thể tích khối chóp S.ABCD theo a. + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f(t) = 45t^2 – t^3(kết quả khảo sát được trong 8 tháng vừa qua). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp - Hòa Bình
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp – Hòa Bình gồm 50 câu hỏi trắc nghiệm, đề thi có đáp án. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, SD = 3a/2. Hình chiếu vuông góc của điểm S trên mặt phẳng đáy là trung điểm của canh AB. Tính khoảng cách từ điểm A đến mặt phẳng (SBD)? + Người ta tiến hành mạ vàng chiếc hộp có dạng hình hộp chữ nhật có nắp. Thể tích của hộp là 1000 cm3, chiều cao của hộp là 10cm. Biết rằng đơn giá mạ vàng là 10.000 đ/cm2. Gọi x ( triệu đồng ) là tổng số tiền bỏ ra khi mạ vàng cả mặt bên trong và mặt bên ngoài chiếc hộp. Tìm giá trị nhỏ nhất của x. + Cho hình chóp S.ABCD có đáy ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a. Tính thể tích tứ diện S.ABCD.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Đại học Vinh lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Đại học Vinh lần 1 gồm 50 câu hỏi trắc nghiệm, đề thi có đáp án và lời giải chi tiết. Lưu ý: Bản giải chi tiết là bản giải của mã đề khác. Trích một số bài toán trong đề thi: + Trong nông nghiệp bèo hoa dâu được dùng làm phân bón, nó rất tốt cho cây trồng. Mới đây một nhóm các nhà khoa học Việt Nam đã phát hiện ra bèo hoa dâu có thể được dùng để chiết xuất ra chất có tác dụng kích thích hệ miễn dịch và hỗ trợ điều trị bệnh ung thư. Bèo hoa dâu được thả nuôi trên mặt nước. Một người đã thả một lượng bèo hoa dâu chiếm 4% diện tích mặt hồ. Biết rằng cứ sau đúng một tuần bèo phát triển thành 3 lần lượng đã có và tốc độ phát triển của bèo ở mọi thời điểm như nhau. Sau bao nhiêu ngày bèo sẽ vừa phủ kín mặt hồ? + Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t – t^2, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là.