Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền Hải Phòng lần 3

Ngày 05 tháng 05 năm 2019, trường THPT Ngô Quyền, Hải Phòng tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ 3, nhằm giúp học sinh khối 12 của nhà trường tiếp tục ôn tập và rèn luyện, củng cố và nâng cao kiến thức môn Toán, để có sự chuẩn bị tốt nhất về kiến thức trước khi bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 3 có mã đề 101, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, đề gồm 6 trang, học sinh có 90 phút để làm bài thi, đề thi có cấu trúc tương tự đề tham khảo THPTQG môn Toán năm 2019 của Bộ GD&ĐT, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 3 : + Ông A đi làm từ lúc 7 giờ và đến cơ quan lúc 7 giờ 12 phút bằng xe gắn máy, trên đường đến cơ quan ông A gặp một người băng qua đường nên ông phải giảm tốc độ để đảm bảo an toàn rồi sau đó lại từ từ tăng tốc độ để đến cơ quan làm việc. Biết đồ thị mô tả vận tốc chuyển động của ông A đi từ nhà đến cơ quan như hình vẽ. Hỏi quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan dài bao nhiêu mét? + Một lớp học có 42 học sinh xếp thành một vòng tròn. Chọn ngẫu nhiên ra 3 học sinh để tham gia vào một trò chơi. Xác suất để trong 3 học sinh được chọn không có 2 học sinh đúng kề nhau bằng? + Cho hình lập phương ABCD.A’B’C’D’ cạnh 2a, gọi M là trung điểm của BB’ và P thuộc cạnh DD’ sao cho DP = 1/4.DD’. Mặt phẳng (AMP) cắt CC’ tại N. Thể tích khối đa diện AMNPBCD bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây - Hà Nội
Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong trò chơi “Chiếc nón kỳ diệu” chiếc kim của bánh xe có thể dừng lại ở một trong 6 vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau. A. 5/36 B. 5/9 C. 5/54 D. 1/36 [ads] + Cho hàm số y = x(1 – x)(x^2 + 1) có đồ thị (C). Mệnh đề nào dưới đây đúng? A. (C) cắt trục hoành tại 3 điểm phân biệt B. (C) không cắt trục hoành C. (C) cắt trục hoành tại 2 điểm phân biệt D. (C) cắt trục hoành tại 1 điểm + Chọn khẳng định sai. Trong một khối đa diện A. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt B. Mỗi mặt có ít nhất 3 cạnh C. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt D. Hai mặt bất kì luôn có ít nhất một điểm chung
Đề thi KSCĐ lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Phạm Công Bình - Vĩnh Phúc
Đề thi khảo sát chuyên đề (KSCĐ) lần 1 năm học 2017 – 2018 môn Toán 12 trường THPT Phạm Công Bình – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án. Trích dẫn đề thi : + Một ngọn hải đăng đặt tại vị trí A có khoảng cách đến bờ biển AB = 5km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng 7km. Người canh hải đăng có thể chèo đò từ A đến M trên bờ biển với vận tốc 4 km/h rồi đi bộ đến C với vận tốc 6 km/h. Vị trí của điểm M cách B một khoảng bao nhiêu để người đó đi đến kho nhanh nhất? A. (14 + 5√5)/12 km B. 2√5 km C. 0 km D. 7 km [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai khối chóp có hai đáy là tam giác đều bằng nhau thì thể tích bằng nhau B. Hai khối đa diện có thể tích bằng nhau thì bằng nhau C. Hai khối đa diện bằng nhau có thể tích bằng nhau D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau + Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Phép vị tự biến tam giác A’B’C’ thành tam giác ABC là: A. Phép vị tự tâm G, tỉ số k = 2 B. Phép vị tự tâm G, tỉ số k = -2 C. Phép vị tự tâm G, tỉ số k = -3 D. Phép vị tự tâm G, tỉ số k = 3
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa - Vĩnh Phúc
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các hàm số sau, hàm số nào là hàm số chẵn. A. y = sin|2016x| + cos2017x B. y = 2016cosx + 2017sinx C. y = cot2015x – 2016sinx D. y = tan2016x + cot2017x [ads] + Cho hàm số: y = x^3 + 2mx^2 + 3(m – 1)x + 2 có đồ thị (C). Đường thẳng d: y = -x + 2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2), B và C . Với M (3; 1), giá trị của tham số m để tam giác MBC có diện tích bằng 2√6 là: A. m = −1 B. m = −1 hoặc m = 4 C. m = 4 D. Không tồn tại m + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng? A. AH ⊥ (SCD) B. BD ⊥ (SAC) C. AK ⊥ (SCD) D. BC ⊥ (SAC)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn - Vĩnh Phúc lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn – Vĩnh Phúc lần 1 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Để số tiền chi phí thấp nhất mà công ty phải thì khoảng cách từ A đến D là bao nhiêu km, biết rằng chi phí để hoàn thành mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. A. 8 km B. 5 km C. 7,5 km D. 6,5 km [ads] + Từ các chữ số 0,1, 2,3, 4,5,6,7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ? A. 2448 B. 3600 C. 2324 D. 2592 + Khẳng định nào sau đây là đúng? A. Hàm số y = tanx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx đồng biến trên khoảng (0; π) C. Hàm số y = cotx nghịch biến trên khoảng (0; π) D. Hàm số y = cosx đồng biến trên khoảng (0; π)