Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT Triệu Sơn - Thanh Hóa

Ngày 08 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chọn đội dự tuyển học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm các cặp số (x;y) nguyên thỏa mãn 2y(2x^2 + 1) – 2x(2y^2 + 1) + 1 = x^3y^3. + Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện: (x – y√2020)/(y – z√2020) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. + Cho hình vuông ABCD cố định. Một điểm I di động trên cạnh AB (I khác A và B). Tia DI cắt đường thẳng CB tại E. Đường thẳng CI cắt AE tại M. Đường thẳng BM cắt đường thẳng DE tại F. 1. Chứng minh rằng BI^2/BE^2 = AI/CE. 2. Trên tia đối của tia AB lấy điểm P sao cho AP = BE. Đường thẳng AE cắt CP tại H. Chứng minh rằng DH song song CI. 3. Tìm quỹ tích điểm F khi I di động trên cạnh AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2013 - 2014 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2013 – 2014 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2014; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2013 – 2014 sở GD&ĐT Ninh Bình : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx – 2 và parabol (P) có phương trình y 2 x 4. Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B. Tìm các giá trị của m để đoạn AB có độ dài nhỏ nhất. + Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C, D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng: a) AC.HF AD.CF b) F là trung điểm của EH c) Hai đường thẳng DC và DI đối xứng với nhau qua đường thẳng DN. + Cho n và k là các số tự nhiên 4 2k 1 An 4. a) Tìm k, n để A là số nguyên tố. b) Chứng minh rằng: + Nếu n không chia hết cho 5 thì A chia hết cho 5. + Với p là ước nguyên tố lẻ của A ta luôn có p – 1 chia hết cho 4.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 - 2013 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 – 2013 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 10/03/2013.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.