Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

22 chuyên đề bồi dưỡng Hình học 7
Nội dung 22 chuyên đề bồi dưỡng Hình học 7 Bản PDF - Nội dung bài viết Tài liệu bồi dưỡng Hình học 7 Tài liệu bồi dưỡng Hình học 7 Tài liệu này bao gồm 229 trang, tập hợp 22 chuyên đề bồi dưỡng Hình học 7, cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập. Các chuyên đề bồi dưỡng bao gồm: Chương I: Đường thẳng vuông góc và đường thẳng song song Chuyên đề 1: Hai góc đối đỉnh Chuyên đề 2: Hai đường thẳng vuông góc Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song Tài liệu này được biên soạn một cách cụ thể và dễ hiểu, phục vụ cho việc học tập và ôn tập Hình học một cách hiệu quả, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.
Chuyên đề tính chất ba đường cao trong tam giác
Nội dung Chuyên đề tính chất ba đường cao trong tam giác Bản PDF - Nội dung bài viết Chuyên đề tính chất ba đường cao trong tam giác Chuyên đề tính chất ba đường cao trong tam giác Chuyên đề này bao gồm 16 trang tài liệu, tập trung vào việc giải thích và áp dụng các tính chất của ba đường cao trong tam giác. Với nội dung chi tiết, hướng dẫn cụ thể, sẽ giúp học sinh lớp 7 nắm vững kiến thức và kỹ năng về tam giác. Trước hết, tài liệu trình bày về lý thuyết về trọng tâm của tam giác, giúp học sinh hiểu rõ khái niệm này và cách tính toán khi gặp vấn đề liên quan. Tiếp theo là các dạng bài tập với đầy đủ đáp án và lời giải chi tiết, giúp học sinh thực hành và tự kiểm tra kiến thức của mình. Mục tiêu của chuyên đề này là nhằm giúp học sinh: - Hiểu rõ về đường cao của tam giác và tính chất ba đường cao trong tam giác. - Áp dụng kiến thức này vào việc giải các bài toán liên quan. Ngoài ra, tài liệu cũng đưa ra các dạng bài tập phổ biến như xác định trực tâm của tam giác, chứng minh hai đường thẳng vuông góc và các bài toán tổng hợp. Các phương pháp giải bài toán cũng được trình bày rõ ràng, từ cách sử dụng tính chất ba đường cao đến định lí trong tam giác cân. Với sự trợ giúp từ tài liệu này, học sinh sẽ có cơ hội nắm vững kiến thức và phát triển kỹ năng giải toán trong chương trình Toán lớp 7. Đồng thời, sẽ giúp học sinh hiểu rõ hơn về quan hệ giữa các yếu tố trong tam giác và các đường đồng quy trong tam giác.
Chuyên đề tính chất ba đường trung trực của tam giác
Nội dung Chuyên đề tính chất ba đường trung trực của tam giác Bản PDF - Nội dung bài viết Chuyên đề tính chất ba đường trung trực của tam giác Chuyên đề tính chất ba đường trung trực của tam giác Chuyên đề này bao gồm 11 trang tài liệu, được thiết kế đặc biệt để giúp học sinh lớp 7 hiểu rõ về tính chất ba đường trung trực của tam giác. Tài liệu cung cấp lý thuyết về trọng tâm, các dạng toán và bài tập liên quan đến chuyên đề, kèm theo đáp án và lời giải chi tiết. Mục tiêu của chuyên đề là cung cấp kiến thức cơ bản về tính chất đường trung trực của tam giác cân và ba đường trung trực tam giác. Học sinh sẽ được trang bị kỹ năng vận dụng tính chất này để giải các bài toán thực tế. Chương trình Toán lớp 7 phần Hình học chương 3 tập trung vào quan hệ giữa các yếu tố trong tam giác, cũng như các đường đồng quy trong tam giác. Học sinh sẽ học cách xác định tâm đường tròn ngoại tiếp tam giác, vận dụng tính chất ba đường trung trực để giải quyết các bài toán, và chứng minh ba đường thẳng đồng quy. Đối với dạng bài tập, học sinh sẽ được hướng dẫn cách xác định tâm đường tròn ngoại tiếp tam giác bằng cách xác định giao điểm của hai đường trung trực. Họ cũng sẽ thực hành vận dụng tính chất ba đường trung trực để giải quyết các bài toán khác, và sử dụng tính chất "Ba đường trung trực trong tam giác cắt nhau tại một điểm" để chứng minh ba đường thẳng đồng quy.
Chuyên đề tính chất đường trung trực của một đoạn thẳng
Nội dung Chuyên đề tính chất đường trung trực của một đoạn thẳng Bản PDF Chuyên đề về tính chất đường trung trực của một đoạn thẳng bao gồm lý thuyết về trọng tâm, các dạng toán và bài tập cụ thể giúp học sinh lớp 7 hiểu rõ hơn về chủ đề này. Tài liệu này có 12 trang, bao gồm đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập Toán lớp 7. Nội dung chính được chia thành hai phần lớn: Phần I: Lí thuyết trọng tâm, giúp học sinh hiểu rõ về định lí thuận và đảo về tính chất của các điểm thuộc đường trung trực.Phần II: Các dạng bài tập, bao gồm:- Dạng 1: Vận dụng tính chất của đường trung trực trong việc chứng minh định lí 1.- Dạng 2: Chứng minh một điểm hoặc một đường thẳng là đường trung trực của một đoạn thẳng, sử dụng định lí 2 hoặc định nghĩa đường trung trực.- Dạng 3: Xác định vị trí của điểm thỏa mãn yêu cầu đề bài dựa trên định lí 2.- Dạng 4: Sử dụng tính chất đường trung trực vào bài toán về cực trị, thay đổi độ dài đoạn thẳng và sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất, lớn nhất.Tài liệu này giúp học sinh phát triển kiến thức và kỹ năng về tính chất của đường trung trực và áp dụng vào các bài toán thực tế một cách hiệu quả.