Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 vòng 3 năm học 2022 – 2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 10 vòng 3 năm 2022 – 2023 trường THPT Nguyễn Gia Thiều – Hà Nội : + Lớp 10A có 17 bạn giỏi Bơi, 10 bạn giỏi Chạy, 6 bạn giỏi cả Bơi và Chạy, 9 bạn giỏi cả Bơi và Võ, 7 bạn giỏi cả Chạy và Võ, 4 bạn giỏi đồng thời cả ba môn Bơi, Chạy, Võ. Hỏi lớp 10A có bao nhiêu bạn giỏi Võ, biết rằng trong lớp có 26 bạn giỏi ít nhất một môn (Bơi, Chạy, Võ)? + Một đoàn thám hiểm vùng cực hiện cách căn cứ 240km. Trong vòng 48 giờ tới sẽ có một cơn bão tuyết ập đến. Đoàn phải di chuyển càng nhiều càng tốt bằng tàu rồi đi bộ về căn cứ đoạn đường còn lại trước khi con bão đến. Đoàn thám hiếm có thể điều khiển tàu phá băng với vận tốc 12km/h hoặc đi bộ với vận tốc 3km/h. Viết và vẽ hệ bất phương trình xác định khoảng thời gian đoàn thám hiểm có thế đi bằng tàu phá băng rồi đi bộ để trở về căn cứ trước khi con bão đến. + Nhịp tim là một chỉ số sức khỏe quan trọng mà tất cả chúng ta cần quan tâm, chỉ số này được đo bằng số lần co bóp của tim trong mỗi phút, nhịp tim được kí hiệu là bpm (beat per minute). Đối với hầu hết người trưởng thành khỏe mạnh, nhịp tim nghỉ ngơi dao động từ 60 bpm đến 100 bpm. Nếu bạn hoạt động thể chất thường xuyên thì nhịp tim khi nghỉ ngơi có thể thấp dưới 60 bpm, thậm chí ở các vận động viên con số này chỉ là 40 bpm. Nhịp tim tối đa là nhịp đập khi tim làm việc hết sức để đáp ứng nhu cầu oxy của cơ thể. Để có một trái tim khỏe mạnh chúng ta cần thường xuyên tập thể dục đúng theo tiêu chuẩn và cường độ phù hợp với mỗi người. Các nhà khoa học đã đưa ra công thức khuyến cáo giữa nhịp tim tối đa và độ tuổi là: MHR = 220 – tuổi. Nghiên cứu gần đây công thức giữa nhịp tim tối đa và độ tuổi được sửa đổi là: MHR = 220 – (0,7 x tuổi). Người ta chỉ ra rằng nhịp tim tối đa ở độ tuổi cả công thức mới và công thức cũ cho chính xác cùng một giá trị, thì tập thể dục hiệu quả nhất khi nhịp tim đạt đến 75% của nhịp tim tối đa. Hỏi đó là năm bao nhiêu tuổi và nhịp tim tối đa lúc này là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 THPT : + Một hộ nông dân dự định trồng đậu và cà trên diện tích 800 m2. Biết rằng cứ 100 m2 trồng đậu cần 10 công và lãi 7 triệu đồng còn 100 m2 trồng cà cần 15 công và lãi 9 triệu đồng. Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tiền lãi cao nhất khi tổng số công không vượt quá 90. [ads] + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(1;2), B(2;7). Biết độ dài đường cao kẻ từ A bằng 1 và đỉnh C thuộc đường thẳng y − 3 = 0. Tìm tọa độ đỉnh C. + Cho tam giác ABC có (sinB + 2018.sinC)/(2018sinB + sinC) = sinA và độ dài các cạnh là các số tự nhiên. Gọi M là trung điểm cạnh BC và G là trọng tâm tam giác ABC. Chứng minh tam giác MBG có diện tích là một số tự nhiên.
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 – 2018 sở GD và ĐT Hải Dương gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, nội dung đề gồm các phần: hàm số và đồ thị, phương trình – bất phương trình – hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min – max, kỳ thi được diễn ra vào ngày 04/04/2018, đề thi HSG Toán 10 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 : + Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC (k ∈ R). Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. + Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết phương trình đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. [ads] + Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Để sản xuất 1 tấn sản phẩm loại I cần máy thứ nhất làm việc trong 3 giờ và máy thứ hai làm việc trong 1 giờ. Để sản xuất 1 tấn sản phẩm loại II cần máy thứ nhất làm việc trong 1 giờ và máy thứ hai làm việc trong 1 giờ. Mỗi máy không đồng thời làm hai loại sản phẩm cùng lúc. Một ngày máy thứ nhất làm việc không quá 6 giờ, máy thứ hai làm việc không quá 4 giờ. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất?
Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.