Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bí quyết giải toán số học THCS theo chủ đề

Tài liệu gồm 525 trang, được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, trình bày bí quyết giải toán số học THCS theo chủ đề, một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán 6 / 7 / 8 / 9 và đề tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vậng dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10
Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.
Chuyên đề quỹ tích ôn thi vào lớp 10
Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP
Chuyên đề những định lý hình học nổi tiếng ôn thi vào lớp 10
Tài liệu gồm 39 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề những định lý hình học nổi tiếng, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. 1. Đường thẳng Euler. 2. Đường thẳng Simmon. 3. Đường thẳng Steiner. 4. Đường tròn Euler. 5. Điểm Miquel. 6. Đường tròn Miquel. 7. Định lý Miquel. 8. Định lý Lyness. 9. Định lý Lyness mở rộng (bổ đề Sawayama). 10. Một hệ quả của định lý Lyness mở rộng. 11. Định lý Ptolemy cho tứ giác nội tiếp. 12. Định lý Ptolemy cho tứ giác bất kỳ. 13. Định lý Brocard. 14. Định lý con bướm với đường tròn. 15. Định lý con bướm mở rộng với đường tròn. 16. Định lý con bướm với cặp đường thẳng. 17. Định lý Shooten. 18. Hệ thức Van Aubel. 19. Định lý Ce’va. 20. Định lý Menelaus.
Chuyên đề tiếp tuyến, cát tuyến ôn thi vào lớp 10
Tài liệu gồm 11 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề tiếp tuyến, cát tuyến, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. NHỮNG TÍNH CHẤT CẦN NHỚ 1. Nếu hai đường thẳng chứa các dây AB CD KCD của một đường tròn cắt nhau tại M thì MA.MB = MC.MD. 2. Đảo lại nếu hai đường thẳng AB CD cắt nhau tại M và MA.MB = MC.MD thì bốn điểm A B C D thuộc một đường tròn. 3. Nếu MC là tiếp tuyến và MAB là cát tuyến thì MC MA MB MO R 2 2 2. 4. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD H là trung điểm CD thì năm điểm K A H O B nằm trên một đường tròn. 5. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD thì AC BC AD BD. Ta có: AC KC KAC ADK KAC KAD AD KA. Tương tự ta cũng có: BC KC BD KB mà KA KB nên suy ra AC BC AD BD. Chú ý: Những tứ giác quen thuộc ACBD như trên thì ta luôn có: AC BC AD BD và CA DA CB DB. NHỮNG BÀI TOÁN TIÊU BIỂU