Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế

Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Chào mừng đến với đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Đề thi này sẽ giúp các em học sinh ôn tập và kiểm tra kiến thức Toán của mình thông qua các bài toán thú vị và thách thức. 1. Chứng minh rằng không tồn tại cặp số nguyên x, y nào thỏa mãn phương trình: 4x² + 9y² = 1987 + 13xy. 2. Đề bài cho một số chính phương A có 4 chữ số. Nếu cộng thêm vào mỗi chữ số của A với 3 ta được số chính phương B cũng có 4 chữ số. Hãy tìm giá trị của A và giải thích cách làm. 3. Xét đường tròn (O;R), chọn điểm A sao cho OA = 2R. Gọi B, C lần lượt là giao điểm của đường tròn (O) với đường tròn đường kính OA. Đường thẳng Ax không trùng AO cắt (O) tại D và E (AD < AE). Gọi F là trung điểm của DE. Chứng minh rằng: 3.1. FB + FC = FA 3.2. Nếu FB < FC thì FB < BD. 4. Tam giác nhọn ABC có ABC = 60° nội tiếp đường tròn (O;R). Đường thẳng Ox vuông góc AO cắt AC, AB lần lượt tại D và E. 4.1. Chứng minh 4 điểm B, C, D, E cùng thuộc một đường tròn. 4.2. Tính bán kính đường tròn ngoại tiếp tam giác ODC theo R. Chúc quý thầy cô giáo và các em học sinh lớp 9 của trường THCS Nguyễn Tri Phương TT Huế ôn tập hiệu quả và giải bài tập thật tốt. Hy vọng đề thi này sẽ giúp các em phát triển và thành công trong học tập.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.
Đề chọn học sinh giỏi Toán THCS năm 2020 - 2021 phòng GDĐT thành phố Vĩnh Long
Đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 06 tháng 12 năm 2020. Trích dẫn đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long : + Chứng minh rằng với mọi số nguyên n thì n^2 + n + 2 không chia hết cho 3. + Tìm các số nguyên x; y thỏa mãn y^2 + 2xy – 3x – 2 = 0. + Cho hình thang ABCD (AB // CD) có D = 60°, C = 30°, AB = 2cm, CD = 6cm. Tính diện tích hình thang ABCD. + Cho điểm M thuộc đường tròn (O) và đường kính AB (M khác A, M khác B và MA = MB). Tia phân giác của góc AMB cắt AC tại C. Qua C vẽ đường thẳng vuông góc với AB cắt các đường thẳng AM và BM lần lượt tại D và H. a) Chứng minh hai đường thẳng AH và BD cắt nhau tại điểm N nằm trên đường tròn (O). b) Gọi E là hình chiếu của H trên tiếp tuyến tại A của đường tròn (O). Chứng minh tứ giác ACHE là hình vuông. c) Gọi F là hình chiếu của D trên tiếp tuyến tại B của đường tròn (O). Chứng minh bốn điểm E, M, N, F thẳng hàng.
Đề chọn HSG Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Thường Tín - Hà Nội
Đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội gồm 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội : + Cho một điểm C di động trên đường tròn tâm O, đường kính AB = 2R. I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI); lấy điểm F thuộc AB sao cho AC = AF. Tính CMF. 2. P thuộc tia đối của tia AC sao cho AP = AC; Q là trung điểm của HB. Chứng minh rằng PH vuông góc với CQ. 3. K tâm đường tròn nội tiếp tam giác AHC; CK cắt AB tại E. Tìm vị trí của C trên cung AB để diện tích tam giác CEF đạt giá trị lớn nhất. 4. Chứng minh rằng MH, BI, CF đồng quy. + Cho số nguyên tố p và hai số nguyên dương x, y thỏa mãn 4×2 −3xy − y2 − p (3x + 2y) = 2p2. Chứng minh rằng 5x − 1 là số chính phương. + Cho x, y, z là các số nguyên thỏa mãn (x − y) (y − z) (z − x) = x + y + z. Chứng minh rằng x + y + z chia hết cho 27.