Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải phương trình hàm bằng phương pháp thêm biến - Nguyễn Tài Chung

Tài liệu gồm 60 trang được biên soạn bởi thầy Nguyễn Tài Chung (giáo viên Toán trường THPT chuyên Hùng Vương, tỉnh Gia Lai), hướng dẫn giải phương trình hàm bằng phương pháp thêm biến, giúp học sinh ôn tập thi học sinh giỏi môn Toán. Khái quát nội dung tài liệu giải phương trình hàm bằng phương pháp thêm biến – Nguyễn Tài Chung: A. GIỚI THIỆU PHƯƠNG PHÁP THÊM BIẾN Vào năm 2012, tôi có viết chuyên đề “Giải phương trình hàm bằng phương pháp thêm biến” (tài liệu tham khảo [1]). Trong quá trình giảng dạy tôi có sưu tầm thêm một số bài tập mới, và gần đây có tham khảo thêm bài viết “Phương pháp thêm biến trong giải phương trình hàm” của tác giả Võ Quốc Bá Cẩn (tài liệu tham khảo [3]). Ý tưởng của phương pháp này rất đơn giản như sau: Khi gặp những phương trình hàm với cặp biến tự do x, y, bằng cách thêm biế mới z (hoặc thêm một vài biến mới), ta sẽ tính một biểu thức nào đó chứa x, y, z theo hai cách khác nhau, từ đây ta thu được một phương trình hàm theo ba biến x, y, z, sau đó chọn z bằng những giá trị đặc biệt hoặc biến đổi, rút gọn phương trình hàm theo ba biến x, y, z để thu được những phương trình hàm mới, hướng tới kết quả bài toán. Về mặt ý tưởng thì đơn giản, vì thực ra nó là phương pháp thế khi giải phương trình hàm. Tuy nhiên công dụng của phương pháp này lại mạnh mẽ, giải quyết được nhiều bài toán; việc thêm một vài biến mới sẽ giúp phép thế trở nên linh hoạt, uyển chuyển và có nhiều lựa chọn hơn, từ đó phát hiện được nhiều tính chất thú vị của hàm số cần tìm. [ads] B. MỘT SỐ KẾT QUẢ CƠ BẢN Trong mục này ta sẽ phát biểu và chứng minh một số kết quả (thông qua các bài toán) sẽ được sử dụng trong chuyên đề này. Lưu ý rằng đây là những bài toán rất cơ bản, cần thiết cho những ai muốn tìm hiểu về phương trình hàm (cả kết quả và lời giải), chẳng hạn như bài toán 4, 5, khi đi thi học sinh giỏi là được phép sử dụng mà không cần chứng minh lại. C. PHƯƠNG PHÁP THÊM BIẾN ĐỐI VỚI PHƯƠNG TRÌNH HÀM CÓ TÍNH ĐỐI XỨNG Đối với những phương trình hàm có tính đối xứng theo cặp biến x và y, khi ta thay cặp (x; y) bởi cặp (y; x) thì phương trình hàm vẫn không đổi, tức là ta không thu được gì cả. Những trường hợp như vậy ta thường thêm biến z để tạo ra sự bất đối xứng và thu được những phương trình hàm khác. D. PHƯƠNG PHÁP THÊM BIẾN TRONG LỚP HÀM ĐƠN ĐIỆU E. PHƯƠNG PHÁP THÊM BIẾN TRONG LỚP HÀM LIÊN TỤC Trong mục này chúng ta sẽ xem xét một số phương trình hàm có giả thiết hàm số liên tục, được giải bằng phương pháp thêm biến. Lưu ý rằng kết quả bài toán 4 ở trang 3 tiếp tục được sử dụng nhiều. F. BÀI TẬP Đề bài, hướng dẫn và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Lí thuyết số (chuyên đề bồi dưỡng học sinh giỏi Toán THPT) - Trần Quang Thọ
Chuyên đề lí thuyết số (bồi dưỡng học sinh giỏi Toán THPT) được biên soạn bởi tác giả Trần Quang Thọ (giáo viên Toán trường THPT chuyên Vị Thanh, tỉnh Hậu Giang. Số học hay đa thức đều là các chủ đề thường xuyên xuất hiện trong các đề thi học sinh giỏi cấp quốc gia, các kì thi khu vực cũng như quốc tế với các bài toán khó tới rất khó được các nước cũng như các thầy cô phát triển rất nhiều. Đa thức là mảng mà chứa đựng trong nó các yếu tố về đại số, giải tích, hình học và cả các tính chất về số học. Chính vì thế ta có thể xem đa thức có thể xem như là các bài toán tổ hợp giữa các mảng khác của Toán học cũng như đóng vai trò liên kết các mảng đó lại với nhau thành một thể thống nhất. Điều lí thú là nhiều mệnh đề khó nhất của số học được phát biểu rất đơn giản, ai cũng hiểu được; nhiều bài toán khó nhưng có thể giải rất sáng tạo với những kiến thức số học phổ thông đơn giản. Không ở đâu như trong số học,chúng ta lại có thể lần theo được dấu vết của những bài toán cổ xưa để đến được với những vấn đề mới đang còn chờ đợi người giải – Trích từ cuốn sách Số học – Bà chúa của toán học – Hoàng Chúng. Chính vì thế sự kết hợp của 2 mảng kiến thức này sẽ mang tới cho chúng ta những bài toán đẹp nhưng vẻ đẹp thì không bao giờ là dễ để chúng ta chinh phục cả, nó luôn ẩn chứa những điều khó khăn và “nguy hiểm”. Trong chủ đề của bài viết này, chúng ta sẽ đi khám phá cũng như chinh phục phần nào vẻ đẹp của sự kết hợp đó. MỤC LỤC : I. KIẾN THỨC TRỌNG TÂM. II. CÁC BÀI TOÁN. III. BÀI LUYỆN TẬP. TÀI LIỆU THAM KHẢO : [1]. A comprehensive course in number theory – Alan Baker – Cambridge University Press (2012). [2]. Problem – Solving and Selected Topics in Number Theory_ In the Spirit of the Mathematical Olympiads – Michael Th. Rassias-Springer – Verlag New York (2011). [3]. Lí thuyết số – Tài liệu bồ dưỡng học sinh giỏi – Lê Hoành Phò (2016). [4]. Tính chất số học trong các bài toán về đa thức – Phạm Viết Huy – THPT Chuyên Lê Khiết – Quảng Ngãi.
Sử dụng phương tích - trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 23 trang, hướng dẫn phương pháp sử dụng phương tích – trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. PHẦN 1 . ĐẶT VẤN ĐỀ. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Đó là một khó khăn rất lớn đối với giáo viên và học sinh khi giảng dạy và học tập phần các kiến thức cần thiết trong Hình học. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn công cụ “Phương tích, trục đẳng phương”. Đây là một trong những công cụ mạnh và hữu hiệu để giải quyết lớp bài toán này. PHẦN II . NỘI DUNG SỬ DỤNG PHƯƠNG TÍCH – TRỤC ĐẲNG PHƯƠNG. 1.1 Lý thuyết. 1.1.1 Phương tích của một điểm đối với đường tròn. 1.1.2. Trục đẳng phương của hai đường tròn. 1.1.3. Tâm đẳng phương. 1.2 Bài tập minh họa. 1.3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 18 trang, hướng dẫn phương pháp sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. Phần 1 . Đặt vấn đề. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn các phương pháp “Sử dụng định lý Ceva và Menelaus” để giải quyết lớp bài toán trên. Đây là phương pháp khá cổ điển và đặc trưng cho lớp bài toán này. Phần 2 . ĐỊNH LÝ CEVA VÀ MENELAUS TRONG BÀI TOÁN CHỨNG MINH ĐỒNG QUY, THẲNG HÀNG. 1 Lý thuyết. 1.1. Định lí Ceva. 1.2. Định lí Ceva dạng lượng giác (Ceva sin). 1.3 Định lí Menelaus. 2 Bài tập minh họa. 3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng
Tài liệu gồm 29 trang, được biên soạn bởi thầy giáo Nguyễn Bá Hoàng (trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn phương pháp ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. A. PHẦN MỞ ĐẦU I. Lý do chọn đề tài: Các bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá là nội dung khó trong đề thi. Có rất nhiều dạng bài tập về hình học phẳng cùng với sự tương ứng của các công cụ đi cùng, trong đó hàng điểm điều hòa là một trong những công cụ mạnh để giải nhiều lớp bài toán về hình học. Mặc dù là một vấn đề khá quen thuộc của hình học phẳng, kiến thức về nó khá đơn giản và dễ hiểu, tuy nhiên nó có ứng dụng nhiều đối với các bài toán chứng minh vuông góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay các bài toán về tập hợp điểm …. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán có liên quan đến hàng điểm điều hòa thường xuyên được đề cập và thường được xem là những dạng toán hay của kì thi. Chính vì vậy tác giả lựa chọn chuyên đề: “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” để thấy được ứng dụng quan trọng của hàng điểm điều hòa đối với khá nhiều dạng bài tập hình học phẳng. Trong chuyên đề tác giả cố gắng tập hợp được các bài toán đặc trưng cho việc sử dụng công cụ hàng điểm điều hòa. II. Mục đích của chuyên đề: Thông qua chuyên đề “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” tác giả rất mong muốn nhận được góp ý trao đổi của các bạn đồng nghiệp và các em học sinh. Chúng tôi mong muốn chuyên đề này góp một phần nhỏ để việc ứng dụng hàng điểm điều hòa trong bài toán hình học phẳng đạt hiệu quả cao nhất. Từ đó giúp các em học sinh hiểu rõ hơn về việc sử dụng hàng điểm điều hòa và tăng khả năng vận dụng nó vào giải các bài toán hình học một cách tốt nhất. B. PHẦN NỘI DUNG I. Hệ thống lý thuyết cơ bản về hàng điểm điều hòa. 1. Tỉ số kép của hàng điểm. 2. Hàng điểm điều hòa. 3. Tỉ số kép của chùm đường thẳng – Chùm điều hòa. 4. Tứ giác điều hòa. II. Bài tập áp dụng. Dạng 1: Khai thác bài toán liên quan đến đường phân giác. Dạng 2: Chứng minh đồng quy, thẳng hàng. C. PHẦN KẾT LUẬN Trên đây là một số bài toán về đường phân giác, đồng quy, thẳng hàng sử dụng đến hàng điểm điều hòa. Kiến thức về hàng điểm điều hòa khá dễ hiểu và đơn giản nhưng ứng dụng của nó thì khá nhiều. Thông qua đó giúp học sinh tiếp cận và hình thành kĩ năng sử dụng hàng điểm điều hòa, cũng như lựa chọn được cách giải bài toán phù hợp, tăng thêm tính say mê, tích cực tìm tòi và sáng tạo. Chuyên đề trên nhằm mục đích trao đổi với các thầy cô dạy bộ môn toán về việc sử dụng hàng điểm điều hòa để giải các bài toán hình học phẳng. Do kiến thức còn nhiều hạn chế nên chắc rằng chuyên đề khó tránh khỏi các thiếu sót, chúng tôi mong có sự góp ý của quý thầy cô để chuyên đề được hoàn thiện hơn. Tác giả xin chân thành cảm ơn!