Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường chuyên Quốc học Huế

Thứ Bảy ngày 11 tháng 01 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường chuyên Quốc học Huế mã đề 159 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường chuyên Quốc học Huế : + Trong không gian với hệ tọa độ Oxyz, cho S(4;2;2) và các điểm A, B, C lần lượt thuộc các trục Ox, Oy, Oz sao cho hình chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc với nhau. Tính thể tích khối chóp S.ABC. + Trong không gian cho tam giác ABC có AB = 4, BC = 6, CA = 8. Tập hợp các điểm M sao cho (MA + MB)(MB + MC) = 0 là mặt cầu có đường kính bằng bao nhiêu? A. Mặt cầu đường kính bằng 4. B. Mặt cầu đường kính bằng 2. C. Mặt cầu đường kính bằng 1. D. Mặt cầu đường kính bằng 3. [ads] + Cho hàm số y = [(2m + 1)x – 6]/(x + 1) có đồ thị (Cm) và đường thẳng d: y = x – 1. Giả sử d cắt (Cm) tại hai điểm phân biệt A, B, gọi M là trung điểm của AB và N là điểm thuộc đường tròn (C): (x + 2)^2 + (y – 3)^2 = 2. Giá trị của m để tam giác AMN vuông cân tại O (O là gốc toạ độ) thuộc khoảng nào dưới đây? + Ta gọi một đấy nhị phân độ dài n là một dãy gồm n chữ số 0 hoặc 1. Tìm số các dãy nhị phân độ dài 7, trong đó có ba chữ số 0 và bốn chữ số 1. + Tìm mệnh đề đúng trong các mệnh đề sau: A. Tồn tại hình chóp có số cạnh gấp đôi số mặt. B. Tồn tại hình lăng trụ có số cạnh gấp đôi số mặt. C. Tồn tại hình lăng trụ có số cạnh bằng số mặt. D. Tồn tại hình chóp có số cạnh bằng số mặt.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương - Quảng Nam
Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Hùng Vương – Quảng Nam tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương – Quảng Nam mã đề 101 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương – Quảng Nam : + Cho hàm số y = f(x) xác định trên [−1;2] \ {1} và có bảng biến thiên như sau. Chọn khẳng định đúng trong các khẳng định sau: A. GTLN của hàm số trên đoạn [−1;2] bằng 5 và hàm số không có giá trị nhỏ nhất trên đoạn [−1;2]. B. Hàm số có giá trị cực đại bằng 3 và giá trị cực tiểu bằng −1. C. GTLN của hàm số trên đoạn [−1;2] bằng 5 và GTNN của hàm số trên đoạn [−1;2] bằng 0. D. GTLN của hàm số trên đoạn [−1;2] bằng 5 và GTNN của hàm số trên đoạn [−1;2] bằng −1. [ads] + Cắt một tấm bìa cứng để được một hình tròn có tâm O và bán kính R = √2. Lấy hai điểm A và B thuộc đường tròn sao cho AOB = 60o. Cắt bỏ phần hình quạt chứa ∆OAB và dán hai mép OA, OB lại với nhau để được một hình nón. Thể tích khối nón gần với giá trị nào sau đây nhất? + Cho hàm số y = f(x) = (ax + m^2)/(cx + m) (ac khác 0 và m khác 0) có bảng biến thiên như sau. Có bao nhiêu giá trị nguyên âm của tham số m để đồ thị hàm số đã cho cắt trục hoành và trục tung lần lượt tại hai điểm A và B sao cho tam giác OAB có diện tích không nhỏ hơn 81 (đơn vị diện tích)?
Đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng - Hải Phòng
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng – Hải Phòng; đề có cấu trúc bám sát đề tham khảo tốt nghiệp THPT năm 2020 môn Toán do Bộ GD&ĐT công bố, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC). Trích dẫn đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng – Hải Phòng : + Một xưởng sản xuất thực phẩm gồm 4 kỹ sư chế biến thực phẩm, 3 kỹ thuật viên và 13 công nhân. Để đảm bảo sản xuất thực phẩm chống dịch Covid-19, xưởng cần chia thành 3 ca sản xuất theo thời gian liên tiếp nhau sao cho ca 1 có 6 người và 2 ca còn lại mỗi ca có 7 người. Tính xác suất sao cho mỗi ca có 1 kĩ thuật viên, ít nhất một kĩ sư chế biến thực phẩm. + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt x là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng? [ads] + Ông An dự định gửi vào ngân hàng một số tiền với lãi suất không đổi là 7% một năm. Biết rằng cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho năm kế tiếp. Tính số tiền tối thiểu x (triệu đồng, x thuộc N) ông An gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy giá trị 45 triệu đồng.
Đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ - Hải Dương
Ngày … tháng 06 năm 2020, trường THPT Nguyễn Văn Cừ, tỉnh Hải Dương tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông (TN THPT) môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ – Hải Dương có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC). Trích dẫn đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ – Hải Dương : + Vi rút cúm gây ra bệnh viêm phổi cấp ngày thứ t với số lượng là F(t) con, nếu phát hiện sớm khi số lượng không vượt quá 40000 con thì bệnh nhân sẽ được cứu chữa. Biết F'(t) = 1000/(2t + 1) và ban đầu bệnh nhân có 2000. Sau 14 ngày bệnh nhân phát hiện ra bị bệnh. Hỏi khi đó có bao nhiêu con vi rút trong cơ thể (làm tròn đến hàng đơn vị) và bệnh nhân có cứu chữa được không? A. 21684 con vi rút và cứu được. B. 24999 con vi rút và cứu được. C. 47170 con vi rút và không cứu được. D. 54340 con vi rút và không cứu được. [ads] + Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 1. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AA’ và BB’. Đường thẳng CM cắt đường thẳng C’A’ tại P, đường thẳng CN cắt đường thẳng C’B’ tại Q. Thể tích khối đa diện lồi A’MPB’NQ bằng? + Trong không gian Oxyz, cho hai mặt cầu (S1), (S2) lần lượt có phương trình là x^2 + y^2 + z^2 – 2x – 2y – 2z – 22 = 0 và x^2 + y^2 + z^2 – 6x + 4y + 2z + 5 = 0. Xét các mặt phẳng (P) thay đổi nhưng luôn tiếp xúc cả hai mặt cầu đã cho. Gọi M(a;b;c) là điểm mà tất cả các mặt phẳng (P) đi qua. Tính tổng S = a + b + c.
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn - Quảng Trị
Ngày … tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, thành phố Đông Hà, tỉnh Quảng Trị tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn – Quảng Trị có mã đề 137, đề thi được biên soạn bám sát ma trận đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn – Quảng Trị : + Giả sử F(x) là một nguyên hàm của hàm số f(x) và G(x) là một nguyên hàm của hàm số g(x). Hỏi khẳng định nào dưới đây sai? A. kF(x) là một nguyên hàm của kf(x) (với k là một hằng số thực). B. F(x)G(x) là một nguyên hàm của f(x)g(x). C. F(x) + G(x) là một nguyên hàm của f(x) + g(x). D. F(x) – G(x) là một nguyên hàm của f(x) – g(x). [ads] + Sân vườn nhà ông An có dạng hình chữ nhật, với chiều dài và chiều rộng lần lượt là 8 mét và 6 mét. Trên đó, ông đào một cái ao nuôi cá hình bán nguyệt có bán kính bằng 2 mét (tức là lòng ao có dạng một nửa của khối trụ cắt bởi mặt phẳng qua trục, tham khảo thêm ở hình vẽ bên). Phần đất đào lên, ông san bằng trên phần vườn còn lại, và làm cho mặt nền của vườn được nâng lên 0,1 mét. Hỏi sau khi hoàn thành, ao cá có độ sâu bằng bao nhiêu? (Kết quả tính theo đơn vị mét, làm tròn đến hàng phần trăm.) + Có 3 hộp đựng bi, hộp thứ nhất đựng 10 bi xanh, hộp thứ hai đựng 5 bi xanh và 5 bi đỏ, hộp thứ ba đựng 10 bi đỏ. Người ta chọn ngẫu nhiên một hộp, sau đó bốc ngẫu nhiên 2 viên bi từ hộp đó thì được cả 2 bi màu xanh. Hỏi nếu tiếp tục bốc thêm 1 viên bi nữa ở hộp đó (hai bi đã bốc trước đó không được trả lại vào hộp) thì xác suất bốc được bi xanh bằng bao nhiêu?