Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập định lí Thalès Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 84 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề định lí Thalès trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống. MỤC LỤC : Chương 4 . ĐỊNH LÍ THALÈS 22. Bài số 15 . ĐỊNH LÍ THALÈS TRONG TAM GIÁC 22. A. Trọng tâm kiến thức 22. 1. Đoạn thẳng tỉ lệ 22. 2. Định lí Thalès trong tam giác 22. B. Các dạng bài tập và phương pháp giải 23. + Dạng 1. Tìm tỉ số của các đoạn thẳng 23. + Dạng 2. Tính độ dài đoạn thẳng 23. + Dạng 3. Chứng minh các hệ thức 26. + Dạng 4. Chứng minh hai đường thẳng song song 28. C. Bài tập vận dụng 28. Bài số 16 . ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC 33. A. Trọng tâm kiến thức 33. 1. Định nghĩa đường trung bình của tam giác 33. 2. Tính chất đường trung bình của tam giác 33. B. Các dạng bài tập và phương pháp giải 33. + Dạng 1. Tính độ dài đoạn thẳng và chứng minh các quan hệ về độ dài 33. + Dạng 2. Chứng minh hai đuờng thẳng song song. Chứng minh ba điểm thẳng hàng 34. C. Bài tập vận dụng 35. Bài số 17 . TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC 38. A. Trọng tâm kiến thức 38. B. Các dạng bài tập và phương pháp giải 38. + Dạng 1. Tính độ dài đoạn thẳng 38. + Dạng 2. Chứng minh hệ thức hình học 40. + Dạng 3. Liên quan đến tỉ số diện tích tam giác 42. C. Bài tập vận dụng 42. LUYỆN TẬP CHUNG 44. A. Định lí Thalès 44. 1. Bài tập rèn luyện 44. 2. Bài tập bổ sung 47. B. Định lí Thalès đảo 69. 1. Bài tập rèn luyện 69. 2. Bài tập bổ sung 71. C. Đường trung bình của tam giác 76. 1. Bài tập rèn luyện 76. 2. Bài tập bổ sung 77. D. Tính chất đường phân giác của tam giác 80. 1. Bài tập rèn luyện 80. 2. Bài tập bổ sung 82. ÔN TẬP CHƯƠNG IV 86. A. Trọng tâm kiến thức 86. B. Các dạng bài tập và phương pháp giải 86. + Dạng 1. Tính độ dài đoạn thẳng. Tỉ số 86. + Dạng 2. Chứng minh đoạn thẳng bằng nhau 88. + Dạng 3. Tính tỉ số của hai đường thẳng 89. + Dạng 4. Sử dụng tính chất đường trung bình để chứng minh bài toán 91. C. Bài tập vận dụng 92. D. Bài tập bổ sung 95.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
Tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Thanh Am – Hà Nội gồm 11 trang. I. LÝ THUYẾT 1. Đại số: – Phép nhân và phép chia đa thức. – Các hằng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Cộng, trừ các phân thức đại số. 2. Hình học: – Định nghĩa, tính chất, dấu hiệu nhận biết của: hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. CÂU HỎI TRẮC NGHIỆM THAM KHẢO
Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề cương ôn tập học kì 1 Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội gồm 04 trang, hướng dẫn nội dung Toán 8 học sinh cần ghi nhớ và tuyển chọn các bài toán tự luyện Toán 8 giúp học sinh thử sức để chuẩn bị cho đợt kiểm tra cuối học kì 1 Toán 8 sắp tới. A. PHẦN ĐẠI SỐ I. KIẾN THỨC CƠ BẢN. 1) Các quy tắc nhân, chia đơn thức, đa thức, biết cách chia hai đa thức 1 biến. 2) 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. II. CÁC BÀI TẬP TỰ LUYỆN. B. PHẦN HÌNH HỌC I. KIẾN THỨC CƠ BẢN. II. CÁC DẠNG TOÁN.
Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8
Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.
Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Đoàn Thị Điểm - Hà Nội
Đề cương ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Đoàn Thị Điểm – Hà Nội gồm 13 trang, bao gồm mục tiêu, nội dung ôn tập và bài tập tự luyện Toán 8, giúp học sinh lớp 8 rèn luyện để chuẩn bị cho kì thi kiểm tra chất lượng cuối học kì 1 Toán 8 năm học 2021 – 2022. PHẦN 1 . MỤC TIÊU. ĐẠI SỐ: – HS được ôn tập và củng cố lại các kiến thức về nhân, chia đa thức, bảy hằng đẳng thức đáng nhớ, các phương pháp phân tích đa thức thành nhân tử. Áp dụng giải các dạng bài tập có liên quan. – HS được ôn lại các phép toán về cộng trừ, nhân, chia phân thức đại số. Áp dụng giải các dạng bài tập có liên quan. – Rèn luyện tính cẩn thận khi thực hành, luyện tập làm các tập tổng hợp về rút gọn phân thức. Áp dụng giải các dạng bài tập có liên quan. HÌNH HỌC: – HS được ôn lại: Định nghĩa, các dấu hiệu nhận biết, tính chất các tứ giác đặc biệt như: hình thang, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Ôn lại công thức tính diện tích một số tứ giác đặc biệt như: Diện tích hình chữ nhật, diện tích hình vuông, diện tich tam giác. – Rèn luyện kĩ năng vẽ hình, phân tích đề bài tìm hướng giải, kĩ năng trình bày bài cho HS. PHẦN 2 . NỘI DUNG ÔN TẬP. A. LÍ THUYẾT: 1) Học thuộc các quy tắc nhân, chia đơn thức với đơn thức, đơn thức với đa thức, phép chia hai đa thức 1 biến. 2) Nắm vững và vận dụng được 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Nêu tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Học thuộc các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. 5) Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. 6) Định nghĩa hình thang, hình thang cân, tính chất & dấu hiệu nhận biết hình thang cân. 7) Định nghĩa, tính chất đường trung bình của tam giác, hình thang. 8) Định nghĩa, tính chất & dấu hiệu nhận biết hình bình hành, hình chữ nhật, hình thoi, hình vuông. 9) Định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. 10) Các tính chất về diện tích đa giác, công thức tính diện tích hình chữ nhật, hình vuông, tam giác. B. BÀI TẬP: Dạng 1. Bài tập trắc nghiệm. Dạng 2. Biến đổi đồng nhất đơn thức, đa thức. Dạng 3. Biến đổi đồng nhất phân thức đại số. Dạng 4. Bài toán hình tổng hợp. Dạng 5. Bài tập nâng cao.