Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tháng 9 năm 2018 lớp 12 môn Toán trường THPT chuyên Bắc Giang

Nội dung Đề thi tháng 9 năm 2018 lớp 12 môn Toán trường THPT chuyên Bắc Giang Bản PDF Đề thi tháng 9 năm 2018 môn Toán lớp 12 trường THPT chuyên Bắc Giang mã đề 341 được biên soạn nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 12, đồng thời tạo điều kiện để các em rèn luyện thường xuyên hướng đến kỳ thi THPT Quốc gia năm 2019. Đề gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, nội dung đề gồm chương trình Toán lớp 10, Toán lớp 11 và Toán lớp 12 theo như định hướng của Bộ GD và ĐT cho kỳ thi THPTQG năm nay. Kỳ thi được tổ chức tại trường THPT chuyên Bắc Giang (tỉnh Bắc Giang) vào ngày 23 tháng 09 năm 2018. Trích dẫn đề thi tháng 9 năm 2018 môn Toán lớp 12 trường THPT chuyên Bắc Giang : + Cho hàm số phù hợp với bảng biến thiên sau. Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên khoảng (-∞;-1) ∪ (1;+∞) và nghịch biến trên (-1;0) ∪ (0;1). B. Hàm số đồng biến trên hai khoảng (-∞;-1), (11;+∞) và nghịch biến trên khoảng (-1;11). C. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên (-1;1). D. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên hai khoảng (-1;0), (0;1). + Khi sản xuất vỏ lon sữa bò hình trụ các nhà thiết kế đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ hộp ít nhất (diện tích toàn phần của lon nhỏ nhất). Bán kính đáy của vỏ lon là bao nhiều khi muốn thể tích của lon là 314cm^3. + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập làm vốn ban đầu để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm, người đó được lĩnh số tiền không ít hơn 80 triệu đồng (cả vốn ban đầu và lãi), biết rằng trong suốt thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 - 2022 sở GDĐT Thanh Hóa
Nhằm giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2022, sáng thứ Ba ngày 26 tháng 04 năm 2022, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2021 – 2022 lần thứ hai. Đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trên tập hợp các số phức, xét phương trình z2 – 2z – m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2/2 với C(-1;1). Tổng các phần tử trong T bằng? + Cho hình trụ có O và O’ là tâm của hai đáy. Xét hình chữ nhật ABCD có A và B cùng thuộc đường tròn (O) và C và D cùng thuộc đường tròn (O’) sao cho AB = 3/3, BC = 6; đồng thời mặt phẳng (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – 2z + 10 = 0 và hai điểm A(1;-1;2), B(2;0;-4). Gọi M(a;b;c) là điểm thuộc đoạn thẳng AB sao cho luôn tồn tại hai mặt cầu có bán kính R = 6 tiếp xúc với mặt phẳng (P), đồng thời tiếp xúc với đoạn thẳng AB tại M. Gọi T = [m;n) là tập giá trị của biểu thức 25a2 + b2 + 2c2. Tổng m + n bằng?
Đề khảo sát chất lượng lần 2 Toán 12 năm 2021 - 2022 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào lúc 19h15 ngày 18 tháng 04 năm 2022 theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Cho đồ thị hai hàm số y = f(x) và y = g(x) như hình vẽ bên dưới. Biết đồ thị của hàm số y = f(x) là một Parabol đỉnh I có tung độ bằng -1/2 và y = g(x) là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là x1, x2, x3 thỏa mãn x1.x2.x3 = -6. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) gần nhất với giá trị nào dưới đây? + Từ một miếng tôn hình tròn bán kính 2m, người ta cắt ra một hình chữ nhật rồi uốn thành mặt xung quanh của một chiếc thùng phi hình trụ như hình vẽ bên dưới. Để thể tích thùng lớn nhất thì diện tích phần tôn bị cắt bỏ gần nhất với giá trị nào sau đây? + Cho lăng trụ ABC.A’B’C’ có thể tích là V. M N P là các điểm lần lượt nằm trên các cạnh AM 1 BN AA’ 3′ BB’ СР AA’ BB’ CC’ sao cho x y. Biết thể tích khối đa diện ABC.MNP CC 2V bằng? Giá trị lớn nhất của x.y bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hà Nội; kỳ thi được diễn ra vào chiều thứ Sáu ngày 22 tháng 04 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Nội : + Cắt một khối trụ có chiều cao 5 dm bởi một mặt phẳng vuông góc với trục thì được hai khối trụ mới có tổng diện tích toàn phần nhiều hơn diện tích toàn phần của khối trụ ban đầu là 187 dm². Tổng diện tích toàn phần của hai khối trụ mới bằng? + Một phòng thi có 24 thí sinh trong đó có 18 thí sinh nam, 6 thí sinh nữ. Cán bộ coi thi chọn ngẫu nhiên 2 thí sinh chứng kiến niêm phong bì đề thi. Xác suất để chọn được 1 thí sinh nam và 1 thí sinh nữ bằng? + Trong không gian Oxyz, cho điểm M(1;2;3). Đường thẳng d đi qua điểm M, d cắt tia Ox tại A và cắt mặt phẳng (Oyz) tại B sao cho MA = 2MB. Độ dài đoạn thẳng AB bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi nhằm kiểm tra kiến thức thường xuyên để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Cho hàm số f(x) xác định, liên tục và có đạo hàm trên khoảng (a;b). Xét các mệnh đề sau: (1) Nếu f(x) đồng biến trên (a;b) thì hàm số không có cực trị trên (a;b). (2) Nếu f(x) nghịch biến trên (a;b) thì hàm số không có cực trị trên (a;b). (3) Nếu f(x) đạt cực trị tại điểm x0 thuộc (a;b) thì tiếp tuyến của đồ thị hàm số tại điểm M (x0;f(x0)) song song hoặc trùng với trục hoành. (4) Nếu f(x) đạt cực đại tại x0 thuộc (a;b) thì f(x) đồng biến trên (a;x0) và nghịch biến trên (x0;b). Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng? + Trong không gian Oxyz, cho hai điểm A (3;1;1), B(3;-2;-2). Điểm M thuộc mặt phẳng (Oxz) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (Oxz) các góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Bán kính R của đường tròn (C) là? + Cho khối chóp S.ABC có SA = SB = SC = a; ASB = 60°; BSC = 90°; CSA = 120°. Gọi M, N lần lượt là các điểm trên cạnh AB và SC sao cho. Khi khoảng cách giữa M và N nhỏ nhất, thể tích của khối chóp S.AMN bằng?