Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hệ tọa độ trong không gian

Tài liệu gồm 17 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hệ tọa độ trong không gian, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững định nghĩa hệ trục tọa độ Oxyz trong không gian, các khái niệm về tọa độ điểm, tọa độ vectơ. + Nắm vững biểu thức tọa độ các phép toán vectơ và các tính chất. + Nắm vững biểu thức tọa độ của tích vô hướng, tích có hướng của hai vectơ và các ứng dụng. + Nắm vững được phương trình mặt cầu, điều kiện để một phương trình là phương trình mặt cầu. Kĩ năng : + Biết tìm tọa độ của một điểm, một vectơ. Tính được tổng, hiệu các vectơ, tích của vectơ với một số. + Tính được tích vô hướng của hai vectơ và các ứng dụng: tính độ dài vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. + Xác định được tích có hướng của hai vectơ và vận dụng làm được một số bài toán. + Viết phương trình mặt cầu biết tâm và bán kính. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Sử dụng các định nghĩa và khái niệm có liên quan đến điểm, vectơ: Tọa độ của điểm, vectơ; độ dài vectơ … và các phép toán vectơ … để tính tổng, hiệu các vectơ; tìm tọa độ trọng tâm tam giác. Dạng 2 : Tích có hướng và ứng dụng. – Bài toán 1. Tìm vectơ tích có hướng. + Để tính tích có hướng của hai vectơ, ta áp dụng công thức. – Bài toán 2. Ứng dụng của tích có hướng để chứng minh tính đồng phẳng. + Ba vectơ a b c đồng phẳng. + Bốn điểm A, B, C, D tạo thành tứ diện. – Bài toán 3. Ứng dụng của tích có hướng để tính diện tích và thể tích. + Diện tích hình bình hành. + Tính diện tích tam giác. + Tính thể tích hình hộp. + Tính thể tích tứ diện. Dạng 3 : Phương trình mặt cầu. Mặt cầu tâm I(a;b;c) và bán kính R có phương trình: (x – a)2 + (y – b)2 + (z – c)2 = R2.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Phương trình đường thẳng
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình đường thẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình đường thẳng: Vấn đề 1. Xác định các yếu tố cơ bản của đường thẳng. Vấn đề 2. Viết phương trình đường thẳng. Vấn đề 3. Khoảng cách và góc. Vấn đề 4. Vị trí tương đối.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.
Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.
Bài toán phương trình mặt cầu - Diệp Tuân
Tài liệu gồm 81 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình mặt cầu trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình mặt cầu – Diệp Tuân: Dạng 1 . Xác định tâm và bán kính mặt cầu cho trước. Dạng 2 . Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. + Bài toán 1. Phương trình mặt cầu tâm I và đi qua điểm A. + Bài toán 2. Phương trình mặt cầu đường kính AB. + Bài toán 3. Mặt cầu tâm I(a;b;c) tiếp xúc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 4. Mặt cầu ngoại tiếp tứ diện ABCD (đi qua bốn điểm A, B, C, D). + Bài toán 5. Mặt cầu đi qua A, B, C và tâm I thuộc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 6. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d. + Bài toán 7. Mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B phân biệt. + Bài toán 8. Mặt cầu (S) có tâm I và tiếp xúc với mặt cầu (T) cho trước. + Bài toán 9. Mặt cầu (S’) đối xứng với mặt cầu (S) qua mặt phẳng (P). + Bài toán 10. Mặt cầu (S’) đối xứng mặt cầu (S) qua đường thẳng d. + Bài toán 11. Tìm tiếp điểm H là hình chiếu của tâm I trên mặt phẳng (P). + Bài toán 12. Tìm bán kính r và tâm H đường tròn giao tuyến của mặt phẳng và mặt cầu. + Bài toán 13. Tập hợp điểm và bài toán tiếp tuyến.