Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B)

Nội dung Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) Bản PDF Sytu chia sẻ đến các bạn nội dung đề thi và lời giải đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B), kỳ thi được diễn ra vào ngày 04 tháng 12 năm 2018, đề gồm 1 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) : + Một hộ gia đình cần xây dựng một bể chứa nước, dạng hình hộp chữ nhật có thể tích 24 (m3).Tỉ số giữa chiều cao của bể và chiều rộng của bể bằng 4. Biết rằng bể chỉ có các mặt bên và mặt đáy (không có mặt trên). Chiều dài của đáy bể bằng bao nhiêu để xây bể tốn ít nguyên vật liệu nhất. + Có hai chuồng nhốt thỏ, chuồng thứ nhất nhốt 19 con thỏ lông màu đen và 1 con thỏ lông màu trắng. Chuồng thứ hai nhốt 13 con thỏ lông màu đen và 2 con thỏ lông màu trắng. Bắt ngẫu nhiên mỗi chuồng đúng một con thỏ. Tính xác suất để bắt được hai con thỏ có màu lông khác nhau. + Cho hàm số y = x^4 + 2(m + 1)x^2 + m^2 + m – 1, với m là tham số. Tìm các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị là 3 đỉnh của một tam giác đều. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD, AB = 2AD. Điểm N thuộc cạnh AB sao cho AN = 1/4.AB, M là trung điểm của DC. Gọi I là giao điểm của MN và BD. Viết phương trình đường tròn ngoại tiếp tam giác BIN. Biết điểm A(2;1), đường thẳng BD có phương trình 11x – 2y + 5 = 0, điểm B có hoành độ là số nguyên. + Cho tam giác ABC có cạnh BC = a, AB = c thỏa mãn √(2a – c).cosB/2 = √(2a + c).sinB/2, với 2a > c. Chứng minh rằng tam giác ABC là tam giác cân.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Bình Phước
Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Bình Phước gồm 6 bài toán tự luận, có lời giải chi tiết và thang điểm. Đề thi dành cho cả khối lớp THPT và GDTX. Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1; 2). Gọi M N, lần lượt là trung điểm của các cạnh CD và AD, K là giao điểm của BM với CN. Viết phương trình của đường tròn ngoại tiếp tam giác BNK, biết đường thẳng BM có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. [ads] + Cho đường tròn (O) đường kính AB, một đường thẳng d không có điểm chung với đường tròn (O) và d vuông góc với AB kéo dài tại K (B nằm giữa A và K). Gọi C là một điểm nằm trên đường tròn (O), (C khác A và B). Gọi D là giao điểm của AC và d, từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp điểm và E, C nằm về hai phía của đường kính AB). Gọi F là giao điểm của EB và d, G là giao điểm của AF và (O), H là điểm đối xứng của G qua AB. Chứng minh ba điểm F, C, H thẳng hàng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với, AB = AD = a, CD = 2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SD và BC.
Đề thi chọn HSG Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc
Đề thi chọn HSG Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Vĩnh Phúc gồm 10 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cường độ động đất M được cho bởi công thức M = logA – logA0 trong đó A là biên độ rung chấn tối đa, A0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất kia? [ads] + Trong không gian cho 2n điểm phân biệt (n > 4, n ∈ N), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt. + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m – 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức (3k1 + 1)^2.(3k2 + 1)^2 đạt giá trị nhỏ nhất.
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.