Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Đăng Đạo Bắc Ninh

Nội dung Đề khảo sát lần 1 lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Đăng Đạo Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 THCS Nguyễn Đăng Đạo Bắc Ninh Đề khảo sát môn Toán lớp 9 THCS Nguyễn Đăng Đạo Bắc Ninh Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta có cơ hội tham gia vào đề khảo sát chất lượng lần 1 môn Toán cho năm học 2022-2023 tại trường THCS Nguyễn Đăng Đạo, tỉnh Bắc Ninh. Đề thi sẽ diễn ra vào ngày 30 tháng 11 năm 2022. Dưới đây là một số câu hỏi mà các em sẽ phải hoàn thành: Cho các khẳng định sau: (1) Qua ba điểm phân biệt chỉ vẽ được một đường tròn duy nhất. (2) Có vô số đường tròn đi qua hai điểm phân biệt. (3) Tâm đường tròn ngoại tiếp tam giác nằm ở trung điểm của cạnh lớn nhất. (4) Trong một đường tròn, đường kính đi qua trung điểm của dây thì vuông góc với dây ấy. Số khẳng định đúng? Cho hàm số y = (m − 1)x + 2 − m (với m là tham số). a) Vẽ đồ thị hàm số khi m = 3. b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 5. c) Chứng minh rằng khoảng cách từ gốc tọa độ O đến đồ thị hàm số không vượt quá 2. Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất. Hy vọng rằng bài kiểm tra sẽ giúp các em nắm vững kiến thức và kỹ năng cần thiết trong môn Toán. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Hà Trung - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho phương trình 2 x m xm (2) 1 0 với m là tham số a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m b) Gọi 1 2 x là hai nghiệm phân biệt của phương trình. Tìm m để 2 x 6. + Cho tam giác ABC (AB AC) nội tiếp đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D E F lần lượt là hình chiếu của M trên BC CA AB. a) Chứng minh bốn điểm M B D F cùng thuộc một đường tròn b) Chứng minh D E F thẳng hàng. c) Chứng minh BC AC AB MD ME MF. + Cho hai hàm số 2 Pyx và (d y xm) 2 3 với m là tham số. Tìm m để đường thẳng (d) đi qua điểm A thuộc (P) có hoành độ bằng 2.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Đình – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Để trang trí cho gian hàng hội chợ xuân, một lớp học dự định gấp 600 con hạc giấy trong một thời gian đã định. Thực tế các bạn nam đã làm vượt mức 18%, các bạn nữ đã làm vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 con hạc giấy. Hỏi số hạc giấy mỗi đội nam, nữ của lớp phải làm theo kế hoạch? + Một lọ hoa hình trụ có đường kính đáy là 22 cm, chiều cao 45 cm. Người ta phủ một lớp men bóng mặt ngoài lọ hoa (không kể đáy). Tính diện tích cần phủ men (lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn AB AC nội tiếp đường tròn O và các đường cao AD BE CF của tam giác cắt nhau tại điểm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn O. Chứng minh BAD KAC. 3) Gọi M và N lần lượt là trung điểm của các đoạn thẳng BC và EF. Hai đường thẳng AN và OM cắt nhau tại điểm I. Chứng minh tam giác ANF đồng dạng với tam giác AMC và IB là tiếp tuyến của O.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mẹ An vào cửa hàng mua một chai dầu gội đầu và một chai sữa rửa mặt với tổng số tiền theo giá niêm yết là 360 nghìn đồng. Tuy nhiên, hôm nay cửa hàng có khuyến mại: chai dầu gội đầu giảm 10% còn chai sữa rửa mặt giảm 5% so với giá niêm yết. Do đó mẹ An thanh toán cho cửa hàng khi mua hai sản phẩm trên là 332 nghìn đồng. Tính giá tiền niêm yết tại cửa hàng của chai dầu gội đầu và chai sữa rửa mặt? + Một hộp sữa đặc dạng hình trụ có bán kính đáy là 3,5 cm; chiều cao 8 cm. Hỏi bên trong hộp chứa bao nhiêu mi-li-lít sữa? (Coi thể tích phần vỏ hộp không đáng kể và lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AK của (O). Gọi E là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác AHEC là tứ giác nội tiếp. 2) Chứng minh: HE // BK và AB.AE = AC.AH. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi F là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh rằng M là tâm đường tròn ngoại tiếp HEF.