Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Bình

Nội dung Đề thi chọn HSG tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề thi chọn Học Sinh Giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Đề thi chọn Học Sinh Giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Sytu trân trọng giới thiệu đến quý thầy cô và các bạn học sinh lớp 9 đề thi chọn Học Sinh Giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 từ Sở Giáo dục và Đào tạo tỉnh Quảng Bình. Kỳ thi sẽ diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022. Trích dẫn một số câu hỏi từ Đề thi chọn HSG tỉnh Toán lớp 9 năm 2022 - 2023 sở GD&ĐT Quảng Bình: Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y > 1. Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP. Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n > 1). Chứng minh rằng: P không phải là số chính phương. Các câu hỏi trong đề thi chọn HSG tỉnh lớp 9 môn Toán năm học 2022 - 2023 đòi hỏi sự hiểu biết sâu rộng về kiến thức Toán, khả năng tư duy logic và giải quyết vấn đề. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hà Giang : + Cho a, b, c là các số nguyên, đôi một nguyên tố cùng nhau thỏa mãn (a – c)(b – c) = c2. Chứng minh tích abc là số chính phương. + Cho a, b là các số thực không âm thỏa mãn điều kiện a + b = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a4 + 1)(b4 + 1) – 4ab. + Cho tam giác ABC không cân (AB < AC), nội tiếp đường tròn tâm O. Gọi AD (D thuộc BC) là đường cao của tam giác ABC, AM là đường kính của đường tròn tâm O, K là hình chiếu của B lên AM. a) Chứng minh ABDK là tứ giác nội tiếp và DK vuông góc với AC. b) Gọi E, F lần lượt là trung điểm của đoạn thẳng BD, CM. Chứng minh AEF = 90°.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Long An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Long An : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Ba đường cao AD, BE và CF của tam giác ABC đồng quy tại H (các điểm D, E và F lần lượt thuộc các cạnh BC, AC và AB). Các đường thẳng AD, BE và CF lần lượt cắt đường tròn (O) tại K, M và N (các điểm K, M và N lần lượt không trùng với các điểm A, B và C). a) Chứng minh H là tâm đường tròn nội tiếp tam giác DEF. b) MK cắt AC tại P, NK cắt AB tại Q. Chứng minh ba điểm Q, H, P thẳng hàng. c) Tính giá trị của biểu thức T. + Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC có bán kính bằng r và BC = a. Chứng minh. + Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho xyz là các số nguyên và 2023 Px y z. Chứng minh rằng P chia hết cho 30 khi và chỉ khi S chia hết cho 30. + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Các đường cao AD BE CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD MH và tứ giác AODP nội tiếp một đường tròn. b) Gọi Q là giao điểm của PA và EF. Chứng minh AQ AP AH AD và DQ EF. c) Tia PE và tia PF cắt đường tròn (O)lần lượt tại L và N (L N khác P). Chứng minh LC NB. + Cho n là số lẻ. Chứng minh rằng từ 2 n 1 số nguyên bất kì có thể chọn ra được n số sao cho tổng của chúng chia hết cho n.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Cho a, b là các số nguyên dương thỏa mãn (a + b)2 + 4a / ab là số tự nhiên. Chứng minh rằng: Nếu b là số lẻ thì a là số chính phương. + Tìm tất cả các tam giác vuông có độ dài các cạnh là số nguyên dương và số đo chu vi bằng số đo diện tích. + Cho tứ giác ABCD nội tiếp trong đường tròn (O). Gọi P là điểm chính giữa cung CD không chứa hai điểm A và B. Tia AP cắt đường thẳng BC tại E, tia BP cắt đường thẳng AD tại F.