Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Nghệ An (Bảng A)

Thứ Tư ngày 28 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Nghệ An (Bảng A) gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Nghệ An (Bảng A) : + Cho x, y, z là các số thực dương thỏa mãn 2x + 4y + 7z = 2xyz . Tìm giá trị nhỏ nhất của biểu thức P = x + y + z. + Cho hình lăng trụ ABC.A1B1C1 có đáy là tam giác đều cạnh bằng a và BA1 = BB1 = BC1 = a√3. a) Tính khoảng cách từ C đến mặt phẳng (ABB1A1). b) Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABB1, ACC1, CBB1. Tính thể tích khối đa diện lồi có các đỉnh là các điểm G1, G2, G3, A1, B1 và C1. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = 1, SB = SC = 2√2. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Một mặt phẳng (a) thay đổi đi qua I lần lượt cắt các tia SA, SB, SC tại M, N, P. Chứng minh rằng 1/SM^2 + 1/SN^2 + 1/SP^2 >= 5/8.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Lào Cai
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Lào Cai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 15 tháng 01 năm 2022; đề thi có đáp án và lời giải chi tiết (lời giải chi tiết được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán). Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Lào Cai : + Cho hàm số 1 3 x y x có đồ thị C. Gọi I là giao điểm của của hai đường tiệm cận của C. Tìm tất cả các giá trị của tham số m để đường thẳng d y x m cắt C tại hai điểm phân biệt M N sao cho tam giác MNI có trọng tâm nằm trên C. +  Cho hình chóp S ABCD có đáy là hình thoi cạnh bằng a đường chéo AC a. Tam giác SAD là tam giác cân tại S và SAD ABCD. Biết SA tạo với đáy một góc bằng 45. a) Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. b) Gọi M là trung điểm SD, lấy điểm N thuộc cạnh SC sao cho SN NC 2, gọi P là giao điểm của AMN với BC. Tính thể tích khối đa diện AMNPCD. + Gọi S là tập hợp các số tự nhiên có 6 chữ số được lập từ tập A = {0;1;2;3;4;5;6;7;8;9}. Lấy ngẫu nhiên một số từ tập S. Tính xác suất để lấy được số có dạng abcdef sao cho a b c d e f 1400.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Hưng Yên
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra vào thứ Ba ngày 22 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Hưng Yên : + Tìm tất cả các giá trị thực của tham số m để hàm số 3 1 2 2 21 1 3 2 x y m x m mx nghịch biến trên khoảng 2021 2022. + Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số 2 1 3 x y x x m có hai đường tiệm cận đứng và khoảng cách giữa hai đường tiệm cận đó bằng 5. + Cho tứ diện ABCD nội tiếp trong hình cầu tâm O bán kính R với tâm O nằm trong tứ diện. Gọi A’ B’ C’ D’ lần lượt là giao điểm của các đường thẳng AO BO CO DO với các mặt phẳng BCD CDA DAB ABC. Chứng minh rằng 4 3 R OA OB OC OD. + Gọi S là tập các số tự nhiên gồm 6 chữ số khác nhau sao cho trong số đó có 3 chữ số chẵn và 3 chữ số lẻ. Chọn ngẫu nhiên một số trong trong tập S, tính xác suất để số được chọn có dạng abcdef thỏa mãn abcdef. + Cho hình chữ nhật ABCD, điểm M thuộc cạnh CD sao cho MC MD 2. Biết AM 2 và 1 cos 10 AMB tính thể tích khối tròn xoay khi cho miền tam giác MAB quay quanh cạnh AB.
Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Cho hàm số y f x có bảng biến thiên như hình vẽ sau Khẳng định nào sau đây đúng? A. Đồ thị hàm số không có tiệm cận. B. Hàm số nghịch biến trên các khoảng và C. Đồ thị hàm số có ba đường tiệm cận. D. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD b và cạnh bên SA c vuông góc với mặt phằng (ABCD). Gọi M là một điếm trên cạnh SA sao cho AM x 0 x c. Tìm x để mặt phằng (MBC) chia khối chóp thành hai khối đa diện có thể tích bằng nhau. + Cho 3 số abc theo thứ tự lập thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là d. Tính a d.
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 2022 sở GD ĐT Cà Mau
Nội dung Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 2022 sở GD ĐT Cà Mau Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Cà Mau gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 01 năm 2022.