Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khối đa diện

Tài liệu gồm 81 trang được biên soạn bởi thầy giáo Lê Đình Hùng và Nguyễn Văn Vinh, hướng dẫn phương pháp giải toán và tuyển tập trắc nghiệm có đáp án chuyên đề khối đa diện, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề khối đa diện: A – KIẾN THỨC BỔ TRỢ CHO CHUYÊN ĐỀ I. Hình học phẳng. II. Hình học không gian lớp 11: Quan hệ song song, Quan hệ vuông góc, Góc và Khoảng cách. B – CHUYÊN ĐỀ KHỐI ĐA DIỆN BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Phương pháp: Nắm vững lý thuyết về hình đa diện, khối đa diện, các phép dời hình và phân chia, lắp ráp các khối đa diện. Ngoài ra ta cần ghi nhớ thêm các kiến thức sau: + Mối liên hệ giữa số cạnh, số đỉnh và số mặt của một hình đa diện bất kỳ. + Hình chóp có số đỉnh bằng số mặt và có số cạnh gấp đôi số cạnh của đáy. + Nếu một khối đa diện chỉ có các mặt là tam giác thì tổng số các mặt là số chẵn. BÀI 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. BÀI 3 . THỂ TÍCH CỦA KHỐI ĐA DIỆN. [ads] Phương pháp chung: Có 4 phương pháp để tính thể tích của một khối đa diện: + Phương pháp 1: Tính theo công thức. Trong phương pháp này ta cần phải đi tìm đường cao và diện tích đáy. + Phương pháp 2: Sử dụng công thức tỷ số diện tích. Phương pháp này chỉ được áp dụng cho tứ diện, khi có một mặt phẳng cắt tứ diện theo một giao diện nào đó. + Phương pháp 3: Tính thể tích bằng cách chia nhỏ khối đa diện. Khi khối đa diện ban đầu rất khó xác định được chiều cao hoặc diện tích đáy, ta nên dùng phương pháp này. + Phương pháp 4: Tính thể tích bằng cách mở rộng khối đa diện. Ta có thể mở rộng khối đa diện ban đầu để được một khối đa diện mới dễ tính thể tích hơn. Lưu ý phần khối đa diện được mở rộng phải dễ tính thể tích. Khi đó thể tích khối đa diện ban đầu bằng thể tích khối đa diện lúc sau trừ cho thể tích của khối đa diện được mở rộng. CÁC DẠNG BÀI TẬP VỀ HÌNH CHÓP : + Dạng 1: Hình chóp có cạnh bên vuông góc với đáy. + Dạng 2: Hình chóp có một mặt bên vuông góc với đáy. + Dạng 3: Hình chóp đều. + Dạng 4: Phương pháp tỷ số thể tích. + Dạng 5: Cạnh bên hoặc mặt bên tạo với đáy một góc và một số bài toán khác. + Dạng 6: Các bài toán tính khoảng cách. + Dạng 7: Các bài toán xác định góc. CÁC BÀI TẬP VỀ HÌNH LĂNG TRỤ : + Dạng 1: Các bài toán về lăng trụ đứng. + Dạng 2: Hình lăng trụ xiên.

Nguồn: toanmath.com

Đọc Sách

Bài tập nâng cao chuyên đề hình học không gian
Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 99 bài tập nâng cao chuyên đề hình học không gian, có đáp án và lời giải chi tiết, dành cho giáo viên và học sinh ôn thi học sinh giỏi, học sinh năng khiếu và chuyên Toán. Trích dẫn Bài tập nâng cao chuyên đề hình học không gian : + Cho tứ diện đều ABCD có cạnh bằng 1, hai điểm M và N lần lượt nằm trên các đoạn AB và CD, sao cho BN DN. a) Chứng minh rằng AD BC. Tìm điểm I cách đều 4 đỉnh của tứ diện ABCD b) Khi M, N lần lượt là trung điểm của AB và CD, gọi là mặt phẳng chứa BN và song song với MC. Tính chu vi thiết diện tạo bởi và tứ diện ABCD c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của MN khi M, N thay đổi trên các đoạn AB và C D. + Cho hình hộp ABCD A B C D. Trên cạnh AB lấy điểm M khác A và B.Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng ACD a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P). b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất. + Cho lăng trụ tam giác ABC A B C. Trên tia đối của tia AB lấy điểm M sao cho AM = 1 2 AB. Gọi E là trung điểm của CA. a) Xác định thiết diện của lăng trụ cắt bởi mặt phẳng (MEB’) b) Gọi D = BC (MEB’) K = AA’ (MEB’). Tính tỷ số CB CD và AA’.
Chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 374 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Mở đầu về khối đa diện. DẠNG 2 Thể tích khối lăng trụ đứng. DẠNG 3 Thể tích khối chóp có cạnh bên vuông góc với đáy. DẠNG 4 Thể tích khối chóp có mặt bên vuông góc với đáy. DẠNG 5 Thể tích khối chóp đều. DẠNG 6 Thể tích khối tứ diện đặc biệt. DẠNG 7 Tỷ số thể tích. DẠNG 8 Các bài toán thể tích chọn lọc. DẠNG 9 Bài toán về khoảng cách và góc. DẠNG 10 Cực trị khối đa diện. DẠNG 11 Khối đa diện trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán cực trị hình học không gian
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI 1. PHƯƠNG PHÁP GIẢI Áp dụng các phương pháp tính thể tích thông qua tam giác vuông; các loại góc và khoảng cách trong không gian cũng như các công thức tính thể tích khối chóp, khối lăng trụ. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa biến. + Cách 1. Áp dụng bất đẳng thức AM – GM cho các số thực dương. + Cách 2. Khảo sát hàm số f(x) trên khoảng xác định (đạo hàm – lập bảng biến thiên). 2. CÁC VÍ DỤ MINH HỌA II. BÀI TẬP TỰ LUYỆN
Toàn tập thể tích khối đa diện vận dụng cao
Tài liệu gồm 92 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện vận dụng cao (VDC) lớp 12 THPT. Vận dụng cao thể tích khối đa diện đặc biệt – (phần 1). Vận dụng cao thể tích khối đa diện đặc biệt – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 1). Vận dụng cao bài toán thể tích khối đa diện – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 1). Vận dụng cao cực trị thể tích khối đa diện – (phần 2). Vận dụng cao cực trị thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 4). Vận dụng cao cực trị thể tích khối đa diện – (phần 5). Vận dụng cao cực trị thể tích khối đa diện – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 1). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 2). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 3). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 4). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 5). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 7). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 8). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 9). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 10). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 4). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 5). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 4). Vận dụng cao tỉ số thể tích khối hộp – (phần 1). Vận dụng cao tỉ số thể tích khối hộp – (phần 2). Vận dụng cao tỉ số thể tích khối hộp – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 1). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 2). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 4). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 1). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 2). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 3). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 4). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 6). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 7). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 8). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 9). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 10). Xem thêm : Toàn tập thể tích khối đa diện cơ bản