Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 của sở GD&ĐT Hà Tĩnh. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi: + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất. + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x^2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2020 - 2021 trường THPT Lưu Hoàng Hà Nội Đề thi HSG lớp 10 môn Toán năm 2020 - 2021 trường THPT Lưu Hoàng Hà Nội Đề thi HSG Toán lớp 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút. Đề thi bao gồm các câu hỏi về parabol, tọa độ trong mặt phẳng Oxy, và giải tích số. Câu hỏi đầu tiên yêu cầu học sinh tìm giá trị của b và c biết parabol đi qua điểm M(3;2) và có trục đối xứng là đường thẳng x=1. Câu thứ hai yêu cầu tìm m để đường thẳng d cắt parabol tại hai điểm phân biệt A và B sao cho tam giác OAB vuông tại O. Câu tiếp theo đưa ra bài toán về tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. Cuối cùng, câu hỏi cuối cùng đưa ra bài toán giải tích số yêu cầu tìm giá trị lớn nhất của biểu thức A=(x+y+z-1)(1/x+1/y+1/z-2). Đề thi cung cấp lời giải chi tiết và hướng dẫn chấm điểm để học sinh có thể tự kiểm tra và cải thiện kỹ năng giải bài tập. Đây là một đề thi thách thức và phù hợp để học sinh rèn luyện kỹ năng giải toán một cách logic và sáng tạo.
Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Đan Phượng Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Đan Phượng Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội là một bộ đề gồm 4 bài toán dạng tự luận, được thiết kế để kiểm tra năng lực và kiến thức của học sinh lớp 10 trong môn Toán. Học sinh sẽ có 120 phút để hoàn thành bài thi trên 1 trang giấy. Trích dẫn một số câu hỏi từ đề thi: Cho a, b, c là các số thực thỏa mãn: a + b = 8, b + c = 8, c + a = 8. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2. Viết phương trình của đường thẳng đi qua điểm B(4;5) và tạo với đường thẳng 7x + 8y = 0 một góc 45 độ. Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng tứ giác HKMN là hình bình hành. Đề thi này không chỉ đánh giá năng lực toán học của học sinh mà còn đặt ra những bài toán thú vị, phù hợp với đối tượng học sinh lớp 10. Hy vọng rằng các em sẽ đạt kết quả tốt trong kì thi này.
Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Diễn Châu 2 Nghệ An
Nội dung Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Diễn Châu 2 Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Diễn Châu 2 Nghệ An Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Diễn Châu 2 Nghệ An Đề thi HSG Toán lớp 10 năm 2020 – 2021 của trường THPT Diễn Châu 2 Nghệ An bao gồm 5 bài toán dạng tự luận, đòi hỏi học sinh phải suy nghĩ logic và tính toán chính xác. Thời gian làm bài cho mỗi học sinh là 150 phút, đủ để họ giải quyết các vấn đề phức tạp trong đề thi. Một số bài toán trong đề thi mẫu: Cho tam giác ABC có trọng tâm G. Gọi E, F lần lượt là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Yêu cầu chứng minh ba điểm G, E, F thẳng hàng. Cho tam giác ABC với ba cạnh a, b, c (trong đó b > c) và nửa chu vi bằng 10. Biết góc CAB = 60 độ và bán kính đường tròn nội tiếp tam giác là 3. Đề bài yêu cầu tính độ dài đường trung tuyến ma. Trong mặt phẳng (Oxy), đưa ra các thông tin về tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Hãy viết phương trình đường thẳng AH và BC. Đề thi này không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ phát triển kỹ năng tư duy logic và khả năng giải quyết vấn đề. Chắc chắn rằng, với sự cố gắng và kiên trì, học sinh sẽ đạt kết quả cao khi giải quyết các bài toán trong đề thi HSG Toán lớp 10 này.