Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 2 ôn thi THPT QG 2020 trường Triệu Sơn 2 - Thanh Hóa

Ngày … tháng 03 năm 2020, trường THPT Triệu Sơn 2, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai theo định hướng thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa có mã đề 111, đề gồm có 50 câu trắc nghiệm, 07 trang, học sinh làm bài trong 90 phút. Trích dẫn đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa : + Một người vay ngân hàng 200 triệu đồng với lãi suất là 0,8%/ tháng. Người đó muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, người đó bắt đầu hoàn nợ, hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ mỗi tháng là như nhau và người ấy trả hết nợ sau đúng 5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tiền mỗi tháng người đó cần trả cho ngân hàng gần nhất với số tiền nào dưới đây? + Một họa tiết hình cánh bướm như hình vẽ bên dưới. Phần tô đậm được đính đá với giá thành 2.500.000 đồng / m2. Phần còn lại được tô màu với giá thành 2.250.000 đồng / m2. Cho AB = 4dm, BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền gần nhất với số nào sau đây? [ads] + Bể nước của đài phun nước trường THPT Triệu Sơn 2, tỉnh Thanh Hóa là một hình trụ (T) có đáy là hình tròn đường kính 6m (kể cả thành bể, biết rằng thành bể dày 30 cm) và chiều cao 1.5 m. Gọi V và V1 lần lượt là thể tích khối trụ (T) và thể tích nước có thể chứa được trong bể (bỏ qua thể tích các vòi phun). Tính tỉ số V1/V. + Câu lạc bộ Tiếng Anh của trường THPT Triệu Sơn 2 (tỉnh Thanh Hóa) có 68 thành viên, trong đó có 23 nam và 45 nữ. Trong buổi sinh hoạt hàng tháng cần chọn ra 2 thành viên gồm 1 nam và một nữ để dẫn chương trình, trong đó 1 bạn dẫn bằng Tiếng Anh và 1 bạn dẫn bằng Tiếng Việt. Hỏi có tất cả bao nhiêu sự lựa chọn? + Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng cắt các tia Ox, Oy, Oz lần lượt tại A(a;0;0), B(0;b;0), C(0;0;c) sao cho a2 + b2 + c2 = 12 và diện tích tam giác ABC lớn nhất. Mặt phẳng (P) đi qua điểm nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 thi TN THPT 2020 trường THPT chuyên Đại học Vinh - Nghệ An
Chủ Nhật ngày 31 tháng 05 năm 2020, trường THPT chuyên Đại học Vinh, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng môn Toán 12 theo định hướng thi tốt nghiệp THPT năm học 2019 – 2020, kỳ thi được diễn ra theo hình thức thi trực tuyến trên máy vi tính (online). Đề KSCL Toán 12 thi TN THPT 2020 trường THPT chuyên Đại học Vinh – Nghệ An mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh sẽ nhận được đáp án và điểm số của mình sau khi hoàn thành bài thi trên máy tính. Trích dẫn đề KSCL Toán 12 thi TN THPT 2020 trường THPT chuyên Đại học Vinh – Nghệ An : + Ban chỉ đạo phòng chống dịch Covid-19 của sở Y tế Nghệ An có 9 người, trong đó có đúng 4 bác sĩ. Chia ngẫu nhiên Ban đó thành ba tổ, mỗi tổ 3 người để đi kiểm tra công tác phòng dịch ở địa phương. Trong mỗi tổ, chọn ngẫu nhiên một người làm Tổ trưởng. Xác suất để ba tổ trưởng đều là bác sĩ là? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Gọi P là trung điểm của SC. Mặt phẳng (a) chứa AP và cắt hai cạnh SD, SB lần lượt tại M và N. Gọi V’ là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỉ số V’/V. + Cho hàm số y = ax^3 + bx^2 + cx + d có bảng biến thiên như hình bên. Trong các hệ số a, b, c và d có bao nhiêu số âm?
Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành - Thanh Hóa
Ngày … tháng 05 năm 2020, trường THPT Tô Hiến Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng tốt nghiệp THPT môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa có mã đề 121, đề được biên soạn bám sát cấu trúc đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa : + Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88Mhz và 108Mhz. Hai vạch này cách nhau 10cm. Biết vị trí của vạch cách vạch ngoài cùng bên trái d (cm) thì có tần số bằng k.a^d Mhz với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102,7 Mhz. A. Cách vạch ngoài cùng bên phải 1,98cm. B. Cách vạch ngoài cùng bên phải 2,46cm. C. Cách vạch ngoài cùng bên trái 7,35cm. D. Cách vạch ngoài cùng bên trái 8,23cm. [ads] + Cho hệ phương trình log3 (x + y) = m và log2 (x^2 + y^2) = 2m, trong đó m là tham số thực. Hỏi có bao nhiêu giá trị của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? + Cho đồ thị hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a ≠ 1/2. Tìm các giá trị thực dương của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL Toán 12 lần 2 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, ngày … tháng … năm 2020, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ hai. Đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước có mã đề 003, đề gồm 08 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Xét các số nguyên dương a, b sao cho phương trình a(lnx)^2 + blnx + 5 = 0 có hai nghiệm phân biệt x1, x2 và phương trình 5(logx)^2 + blogx + a = 0 có hai nghiệm phân biệt x3, x4 sao cho x1x2 > x3x4. Tìm giá trị nhỏ nhất của S = 2a + 3b. + Cho hàm số y = f(x) có đạo hàm liên tục trên và có đồ thị y = f(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2019 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? [ads] + Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), SA = a. M và K tương ứng là trọng tâm tam giác SAB và SCD; N là trung điểm BC. Thể tích khối tứ diện SMNK bằng m/n.a^3 với m, n thuộc N và (m;n) = 1. Giá trị m + n bằng? + Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = 2m – 4 có đúng 3 nghiệm thực phân biệt. + Hình đa diện nào dưới đây không có tâm đối xứng: Tứ diện đều; Hình lập phương; Hình bát diện đều; Hình trụ. A.Tứ diện đều. B. Lập phương. C. Bát diện đều. D. Hình trụ.
Đề KSCL lần 1 Toán 12 năm 2019 - 2020 trường THPT Tĩnh Gia 4 - Thanh Hoá
giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Tĩnh Gia 4 – Thanh Hoá, nhằm giúp các em ôn tập trong thời điểm nghỉ học do ảnh hưởng của dịch bệnh. Trích dẫn đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Tĩnh Gia 4 – Thanh Hoá : + Một người vay 100 triệu đồng, trả góp theo tháng trong vòng 36 tháng, lãi suất là 0,75% mỗi tháng. Số tiền người đó phải trả hàng tháng (trả tiền vào cuối tháng, số tiền làm tròn đến hàng nghìn) là? A. 3180000. B. 75000000. C. 3179000. D. 8099000. + Bạn A có một cốc thủy tinh hình trụ, đường kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước. Bạn A nghiêng cốc nước, vừa lúc khi nước chạm miệng cốc thì ở đáy mực nước trùng với đường kính đáy. Tính thể tích lượng nước trong cốc. + Cho ba số a, b, c dương và khác 1 thỏa mãn logb √c = x^2 + 1, loga^2 √b^3 = log3√c a = x. Cho biểu thức Q = 24x^2 – 2x – 1997. Chọn khẳng định đúng nhất trong các khẳng định sau?