Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thừa Thiên Huế

Thứ Bảy ngày 05 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Để phục vụ công tác phòng chống dịch COVID – 19, một công ty A lên kế hoạch trong một thời gian quy định làm 20000 tấm chắn bảo hộ để tặng các chốt chống dịch. Do ý thức khẩn trương trong công tác hỗ trợ chống dịch và nhờ cải tiến quy trình làm việc nên mỗi ngày công ty A làm được nhiều hơn 300 tấm so với kế hoạch ban đầu. Vì thế, công ty A đã hoàn thành kế hoạch sớm hơn đúng một ngày so với thời gian quy định và làm được nhiều hơn 700 tấm so với kế hoạch ban đầu. Biết rằng số tấm làm ra trong mỗi ngày là bằng nhau và nguyên cái. Hỏi theo kế hoạch ban đầu, mỗi ngày công ty A cần làm bao nhiêu tấm chắn bảo hộ? + Cho ba điểm A B C phân biệt, cố định và thẳng hàng sao cho B nằm giữa A và C. Vẽ nửa đường tròn tâm O đường kính BC. Từ A kẻ tiếp tuyến AM đến nửa đường tròn (O) (M là tiếp điểm). Trên cung MC lấy điểm E (E không trùng với M và C), đường thẳng AE cắt nửa đường tròn (O) tại điểm thứ hai là F (F không trùng E). Gọi I là trung điểm của EF và H là hình chiếu vuông góc của điểm M lên đường thẳng BC. Chứng minh: a) Tứ giác AMIO nội tiếp. b) Hai tam giác OFH và OAF đồng dạng. c) Trọng tâm G của tam giác OEF luôn nằm trên một đường tròn cố định khi điểm E thay đổi trên cung MC. + Một khúc gỗ đặc có dạng hình trụ, bán kính hình tròn đáy là 10 cm, chiều cao bằng 20 cm, người ta tiện bỏ bên trong khúc gỗ một vật dạng hình nón có bán kính hình tròn đáy là 10 cm, chiều cao bằng một nửa chiều cao của khúc gỗ (như hình vẽ bên). Tính thể tích phần khúc gỗ còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào năm 2023 2024 trường THCS Minh Khai Hà Nội
Nội dung Đề thi thử Toán vào năm 2023 2024 trường THCS Minh Khai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023-2024 trường THCS Minh Khai Hà Nội Đề thi thử Toán vào năm 2023-2024 trường THCS Minh Khai Hà Nội Cảm ơn quý thầy cô và các em học sinh lớp 10 đã quan tâm đến đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 trường THCS Minh Khai, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn một số câu hỏi trong đề thi: + Cho đường thẳng (d): y = -x + 2m - 1. a) Tìm m để đường thẳng (d) đi qua điểm Q(1;-2). b) Tìm m để đường thẳng (d) và đường thẳng (d'): y = 2x − 3 cắt nhau tại một điểm nằm về phía bên trái trục tung. + Cho tam giác ABC. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc BC, AB lần lượt tại D và E. a) Chứng minh bốn điểm B, D, O, E cùng thuộc một đường tròn. b) Kẻ đường kính DF của (O). Tiếp tuyến của (O) tại F cắt AB, AC lần lượt tại P và Q. Chứng minh tam giác BOP vuông. c) Kéo dài AF cắt BC tại M. Chứng minh rằng BD = CM. + Cho a, b, c là độ dài ba cạnh của tam giác thoả mãn: 2c + b = abc. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Toán vào chuyên năm 2023 trường THCS Cầu Giấy Hà Nội
Nội dung Đề thi thử Toán vào chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2022 – 2023 tại trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 28 tháng 02 năm 2023. Dưới đây là một số câu hỏi trích dẫn từ Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy – Hà Nội: Cho \(P(x)\) là đa thức với hệ số nguyên thỏa mãn \(P(2021) \times P(2022) = 2023\). Hỏi đa thức \(P(x)\) có nghiệm nguyên hay không? Cho tam giác \(ABC\) nhọn không cân (AB < AC) có các đường cao \(AD\), \(BE\), \(CF\) cắt nhau tại \(H\). Xác định các điểm \(P\), \(Q\) trên \(BE\), \(CF\) sao cho \(EFPQ\) là hình bình bình hành có giao điểm của hai đường chéo là \(H\). Tiếp đến, xác định điểm \(K\), \(L\) là giao điểm của đường tròn ngoại tiếp tam giác \(DPQ\) với \(BE\), \(CF\), và điểm \(I\) là trung điểm của \(AC\). Chứng minh một số tính chất của các điểm và đường tròn đề cập. Trong 100 số lẻ đầu tiên từ 1 đến 199, tìm số tự nhiên \(k\) nhỏ nhất sao cho khi chọn \(k\) số tùy ý, luôn có ít nhất 2 số mà một trong 2 là bội của số còn lại. Hy vọng rằng đề thi trên sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi!
Đề thi thử Toán vào năm 2023 2024 trường THPT Chu Văn An Thái Nguyên
Nội dung Đề thi thử Toán vào năm 2023 2024 trường THPT Chu Văn An Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023-2024 trường THPT Chu Văn An Thái Nguyên Đề thi thử Toán vào năm 2023-2024 trường THPT Chu Văn An Thái Nguyên Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THPT Chu Văn An, Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2023-2024 trường THPT Chu Văn An - Thái Nguyên: Nhiệt độ Trái Đất tăng cao sẽ gây hậu quả nghiêm trọng, làm thay đổi mực nước biển toàn cầu và ảnh hưởng đến đời sống con người. Nghiên cứu cho thấy từ năm 1950, nhiệt độ Trái Đất tăng theo công thức: T = 0,02t + 15. Hãy tính nhiệt độ vào các năm 1950 và 2023. Cho hàm số bậc nhất y = (1 – 2m)x + 4m + 1 với m là tham số. Tìm m để hàm số đồng biến trên R và cắt trục Oy tại điểm A(0;1). Trong tam giác ABC vuông tại A, gọi O là tâm đường tròn ngoại tiếp tam giác và d là tiếp tuyến của đường tròn (O) tại A. Tiếp tuyến của (O) tại B, C cắt d tại D, E. Chứng minh BC là tiếp tuyến của đường tròn đường kính DE. Chúc các em học sinh ôn tập tốt và làm bài thi thật tốt nhé!
Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023-2024 của trường THCS & THPT Lương Thế Vinh, Hà Nội. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Đề thi sẽ diễn ra vào Chủ Nhật, ngày 27 tháng 02 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Một con chim bói cá đậu trên cành cây cao 3m so với mặt nước hồ. Nếu chim nhìn thấy con cá bơi sát mặt nước và lao xuống để bắt cá với góc tạo bởi đường bay của chim và mặt hồ là 10°, hỏi khoảng cách ban đầu của chúng là bao nhiêu mét? 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước chảy vào một bể trống, biết rằng vòi thứ nhất chảy 1 giờ, sau đó vòi thứ hai chảy 45 phút nữa thì đầy 3/4 bể. Nếu mở vòi thứ nhất 15 phút trước khi mở vòi thứ hai chảy thêm 30 phút, thì bể sẽ đầy 13/24. Hỏi mỗi vòi riêng chảy thì sau bao lâu bể sẽ đầy? 3. Cho parabol y = x^2 và đường thẳng y = mx + 6. a) Với m=2: - Tìm giao điểm của đường thẳng và Parabol. - Gọi các giao điểm trên là A và B. Tính độ dài hình chiếu vuông góc của đoạn AB trên trục Ox. b) Tìm các giá trị nguyên của m để đường thẳng cắt Parabol tại hai điểm phân biệt. Đây chỉ là một số câu hỏi mẫu trong đề thi. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em may mắn và thành công!