Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 đầu năm học 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh

Chiều Chủ Nhật ngày 04 tháng 10 năm 2020, trường THPT Thuận Thành 1, huyện Thuận Thành, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm học môn Toán 12 năm học 2020 – 2021. Đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các chương: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các nội dung quan trọng khác thuộc chương trình Toán lớp 11; đề thi có đáp án mã đề 132. Trích dẫn đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là: A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Hai người ngang tài ngang sức tranh chức vô địch của cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 12 năm 2018 - 2019 trường THCS và THPT Nguyễn Khuyến - Bình Dương lần 5
Đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 5 được chia sẻ bởi giáo viên nhà trường gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề nhằm kiểm tra kiến thức Toán 12 định kỳ giúp học sinh rèn luyện từng bước để chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán, đề kiểm tra có đáp án. Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 5 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn MA = 3MB. Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng? A. (P) không cắt hình chóp. B. (P) cắt hình chóp theo thiết diện là một tứ giác. C. (P) cắt hình chóp theo thiết diện là một tam giác. D. (P) cắt hình chóp theo thiết diện là một ngũ giác. [ads] + Khẳng định nào sau đây là sai về hàm số y = x^3 − 3x? A. Hàm số có hai điểm cực trị. B. Đồ thị hàm số cắt trục hoành tại 3 điểm. C. Đồ thị hàm số đi qua gốc tọa độ O. D. Đồ thị hàm số cắt trục hoành đúng hai điểm. + Từ một khối đất sét hình trụ tròn có chiều cao 20 cm, đường tròn đáy có bán kính 8 cm. Bạn Na muốn chế tạo khối đất đó thành nhiều khối cầu và chúng có cùng bán kính 4 cm. Hỏi bạn Na có thể làm ra được tối đa bao nhiêu khối cầu?
Đề kiểm tra Toán 12 năm 2018 - 2019 trường THCS và THPT Nguyễn Khuyến - Bình Dương lần 4
Đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 được chia sẻ bởi giáo viên nhà trường gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, đề nhằm kiểm tra kiến thức Toán 12 định kỳ giúp học sinh rèn luyện từng bước để chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán, đề thi có đáp án. Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 : + Có một cái bể hình trụ cao 10 dm với bán kính đáy 4 dm chứa đầy nước bị một thùng gỗ hình lập phương đóng kín rơi vào làm cho một lượng nước V tràn ra. Biết rằng cạnh thùng gỗ là 8 dm và khi nó rơi vào miệng bể, một đường chéo dài nhất của nó vuông góc với mặt bể, ba cạnh của thùng chạm vào thành của bể như hình vẽ. Tính V. [ads] + Cho phương trình: 3^x = m + 1. Chọn phát biểu đúng. A. Phương trình luôn có nghiệm với mọi m. B. Phương trình có nghiệm với m ≥ −1. C. Phương trình có nghiệm dương nếu m > 0. D. Phương trình luôn có nghiệm duy nhất x = log_3 (m + 1). + Cho hai hàm số y = f(x) = log_a x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị của hai hàm số f(x) và g(x) luôn cắt nhau tại một điểm. II. Hàm số f(x) + g(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1. II. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận. Số mệnh đề đúng là?
Đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 - 2019 trường THPT Nho Quan A - Ninh Bình
Đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 – 2019 trường THPT Nho Quan A – Ninh Bình mã đề 115 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, đề gồm 7 trang, học sinh làm bài thi trong vòng 90 phút, đề chỉ giới hạn trong nội dung chương trình Toán 12 đã học như hàm số và đồ thị, khối đa diện và thể tích khối đa diện, các bài toán thực tế có liên quan … đề kiểm tra có đáp án. Trích dẫn đề kiểm tra chất lượng bán kỳ 1 Toán 12 năm 2018 – 2019 trường THPT Nho Quan A – Ninh Bình : + Một người thợ nhôm kính nhận đơn đặt hàng làm một bể cá cảnh bằng kính dạng hình hộp chữ nhật không có nắp có thể tích 3,2m3; tỉ số giữa chiều cao của bể cá và chiều rộng của đáy bằng 2 (hình dưới). Biết giá một mét vuông kính để làm thành và đáy bể cá là 800 nghìn đồng. Hỏi người thợ đó cần tối thiểu bao nhiêu tiền để mua đủ số mét vuông kính làm bể cá theo yêu cầu (coi độ dày của kính là không đáng kể so với kích thước của bể cá). [ads] + Trong một hình đa diện, mệnh đề nào dưới đây đúng? A. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt. B. Hai mặt bất kỳ có ít nhất một cạnh chung. C. Hai cạnh bất kỳ có ít nhất một điểm chung. D. Hai mặt bất kỳ có ít nhất một điểm chung. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2x^4 + 2mx^2 – 3m/2 có ba điểm cực trị, đồng thời ba điểm cực trị này cùng với gốc tọa độ O tạo thành bốn đỉnh của một tứ giác nội tiếp được. Tính tổng tất cả các phần tử của S.
Đề thi công bằng học kỳ 1 Toán 12 năm học 2018 - 2019 trường THPT chuyên KHTN - Hà Nội
Đề thi công bằng học kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT chuyên KHTN – Hà Nội được biên soạn theo hình thức tự luận với 4 bài toán, thời gian làm bài 90 phút, kiến thức trong đề gồm các chủ đề: hàm số và đồ thị, mũ và logarit, số phức, phương pháp tọa độ trong không gian Oxyz. Trích dẫn đề thi công bằng học kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT chuyên KHTN – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) biết rằng (P) cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho A, B, C lập thành một tam giác có trọng tâm G(2:3;1). + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x^4 + 2mx^2 – m^2 – m cắt trục hoành tại bốn điểm phân biệt. + Với các số phức z thỏa mãn |z – 2 – 3i| =1, tìm giá trị lớn nhất của biểu thức P = |z – 1| + |z + 1 – 2i|.