Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Cửa Lò - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Cửa Lò, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Cửa Lò – Nghệ An : + Để hỗ trợ các gia đình gặp khó khăn tại địa phương do ảnh hưởng của thiên tai, một tổ chức thiện nguyện đã dự kiến chở 720 tạ gạo đi ủng hộ, số gạo được chia đều vào một số xe cùng loại. Lúc sắp khởi hành, do được bổ sung thêm hai xe cùng loại; vì vậy so với dự định, mỗi xe chở ít đi 18 tạ gạo. Hỏi lúc đầu ban tổ chức thiện nguyện đã chuẩn bị bao nhiêu xe chở gạo? + Một chiếc lều dã ngoại hình nón bằng vải dù có bán kính đáy là 1,5m và độ dài đường sinh là 2,5m. Tính diện tích xung quanh và thể tích của chiếc lều? + Cho đường tròn (O;R) đường kính AB cố định. Gọi H là điểm bất kỳ thuộc đoạn OA (điểm H khác điểm O và A). Vẽ dây CD vuông góc với AB tại H. Gọi M là điểm bất kỳ thuộc đoạn thẳng CH. Đường thẳng AM cắt (O;R) tại điểm thứ hai là E, tia BE cắt tia DC tại F. a) Chứng minh: BEMH là tứ giác nội tiếp. b) Kẻ Ex là tia đối của tia ED. Chứng minh: FEx = FEC. c) Tìm vị trí của điểm H trên đoạn OA sao cho diện tích tam giác OCH đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. a) Chứng minh MN tiếp xúc với đường tròn tâm A bán kính AB. b) Kẻ MP song song với AN (P thuộc đoạn AB) và kẻ NQ song song với AM (Q thuộc đoạn AD). Chứng minh AP = AQ. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. a) Chứng minh tứ giác IFKC nội tiếp b) Chứng minh M là trung điểm của BC. + Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. b) Tìm các số nguyên k thỏa mãn |k| =< 10 và 4n + k là hợp số với mọi n là “số tốt”.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Trên bảng đang có hai số 1 và 2. Thực hiện ghi thêm số lên bảng theo quy tắc sau: Mỗi lần viết lên bảng một số c = ab + a + b với hai số a và b đã có trên bảng. Hỏi với cách viết thêm số như trên sau một số lần hữu hạn có thể viết được số 2022 lên bảng không? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA, MB đến (O) (A, B là tiếp điểm). Kẻ cát tuyến MNP (MN < MP). K là trung điểm của NP. a) Chứng minh các điểm A, K, O, B cùng thuộc một đường tròn và xác định tâm của đường tròn đó. b) BA cắt OK tại E và MP cắt AB tại F. Chứng minh KF là phân giác trong của AKB từ đó suy ra EA.FB = EB.FA. c) Chứng minh khi cát tuyến MNP thay đổi thì trọng tâm tam giác MNP luôn thuộc một đường tròn cố định. + Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho phương trình: 2×2 – (m + 1)x + m – 1 = 0. Tìm các giá trị của m để phương trình có hai nghiệm và hiệu hai nghiệm bằng tích của chúng. + Trong hệ toạ độ Oxy cho đường thẳng (d): y = -x + 4 và điểm A(2;2). a) Chứng tỏ điểm A thuộc đường thẳng (d). b) Tìm a để parabol (P): y = ax2 đi qua điểm A. Với giá trị a tìm được, hãy xác định toạ độ điểm B là giao điểm thứ hai của (d) và (P). c) Tính diện tích tam giác OAB. + Tam giác vuông có cạnh huyền bằng 13cm, diện tích là 30cm. Tính độ dài các cạnh góc vuông.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (đề thi dành cho thí sinh thi vào trường THPT chuyên Phan Bội Châu và trường THPT chuyên ĐH Vinh, tỉnh Nghệ An); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Nguyễn Nhất Huy và thầy Trịnh Văn Luân). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm (O). Các đường cao AD, BE, CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD ∥ MH và 4 điểm A, O, D, P cùng nằm trên một đường tròn. b) Gọi Q là giao điểm của P A và EF. Chứng minh DQ ⊥ EF. c) Tia P E và tia P F cắt đường tròn (O) lần lượt tại L và N (L, N khác P). Chứng minh LC = NB. + Cho tập hợp A gồm 2022 số tự nhiên liên tiếp từ 1 đến 2022. Tìm một số tự nhiên n nhỏ nhất sao cho mọi tập hợp con gồm n phần tử của A đều chứa 3 phần tử là các số đôi một nguyên tố cùng nhau. + Cho n là số nguyên dương. Chứng minh rằng 2n + 36 và 122n + 25 không đồng thời là số chính phương.