Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 8 học kì 2

Tài liệu gồm 219 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa, tóm tắt lí thuyết, các dạng toán và bài tập các chủ đề môn Toán 8 học kì 2. MỤC LỤC : §1 – Mở đầu về phương trình 2. A Tóm tắt lý thuyết 2. B Bài tập và các dạng toán 2. + Dạng 1. Xét xem một số cho trước có là nghiệm của phương trình hay không? 2. + Dạng 2. Xét sự tương đương của hai phương trình 4. C Bài tập về nhà 5. §2 – Phương trình bậc nhất một ẩn và cách giải 7. A Tóm tắt lý thuyết 7. B Bài tập và các dạng toán 7. + Dạng 1. Nhận dạng phương trình bậc nhất một ẩn 7. + Dạng 2. Tìm điều kiện của tham số để phương trình là phương trình bậc nhất một ẩn 8. + Dạng 3. Cách giải phương trình bậc nhất một ẩn 8. C Bài tập về nhà 11. §3 – Phương trình đưa được về dạng ax + b = 0 14. A Tóm tắt lý thuyết 14. B Bài tập và các dạng toán 14. + Dạng 1. Sử dụng các phép biến đổi thường gặp để giải một số phương trình đơn giản 14. + Dạng 2. Phương trình có chứa tham số 18. + Dạng 3. Tìm điều kiện để biểu thức chứa ẩn ở mẫu xác định 19. C Bài tập về nhà 19. §4 – Phương trình tích 22. A TÓM TẮT LÝ THUYẾT 22. B BÀI TẬP VÀ CÁC DẠNG TOÁN 22. + Dạng 1. Giải phương trình tích 22. + Dạng 2. Giải phương trình đưa về phương trình tích 24. C BÀI TẬP VỀ NHÀ 28. §5 – Phương trình chứa ẩn ở mẫu 30. A TÓM TẮT LÝ THUYẾT 30. B BÀI TẬP VÀ CÁC DẠNG TOÁN 31. + Dạng 1. Tìm điều kiện xác định của biểu thức 31. + Dạng 2. Giải phương trình chứa ẩn ở mẫu 32. C BÀI TẬP VỀ NHÀ 36. §6 – Giải bài toán bằng cách lập phương trình 38. A TÓM TẮT LÝ THUYẾT 38. B BÀI TẬP VÀ CÁC DẠNG TOÁN 38. + Dạng 1. Bài toán liên quan đến tìm số 38. + Dạng 2. Bài toán liên quan đến tỉ số phần trăm 39. + Dạng 3. Bài toán liên quan đến tỉ số phần trăm 40. + Dạng 4. Bài toán liên quan đến công việc làm chung, làm riêng 41. + Dạng 5. Bài toán liên quan đến tính tuổi 42. C BÀI TẬP VỀ NHÀ 43. §7 – ÔN TẬP CHƯƠNG III 45. A KIẾN THỨC TRỌNG TÂM 45. B CÁC DẠNG TOÁN 45. §8 – Liên hệ giữa thứ tự và phép cộng 51. A Tóm tắt lý thuyết 51. B Bài tập và các dạng toán 52. + Dạng 1. Sắp xếp thứ tự các số trên trục số. Biểu diễn mối quan hệ giữa các tập số 52. + Dạng 2. Xét tính đúng sai của khẳng định cho trước 53. + Dạng 3. So sánh 54. C Bài tập về nhà 54. §9 – Liên hệ giữa thứ tự và phép nhân 56. A Tóm tắt lý thuyết 56. B Bài tập và các dạng toán 56. + Dạng 1. Xét tính đúng sai của khẳng định cho trước 56. + Dạng 2. So sánh 57. C Bài tập về nhà 58. §10 – Bất phương trình một ẩn 59. A Tóm tắt lý thuyết 59. B Bài tập và các dạng toán 60. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình hay không? 60. + Dạng 2. Viết bằng kí hiệu tập hợp và biểu diễn tập nghiệm của bất phương trình trên trục số 61. C Bài tập về nhà 62. §11 – Bất phương trình bậc nhất một ẩn 63. A TÓM TẮT LÝ THUYẾT 63. B BÀI TẬP VÀ CÁC DẠNG TOÁN 63. + Dạng 1. Nhận dạng bất phương trình bậc nhất một ẩn 63. + Dạng 2. Giải bất phương trình 64. + Dạng 3. Biễu diển tập nghiệm trên trục số 67. + Dạng 4. Bất phương trình tương đương 69. + Dạng 5. Giải bài toán bằng cách lập phương trình 70. C Bài tập về nhà 71. §12 – Phương trình chứa dấu giá trị tuyệt đối 75. A TÓM TẮT LÝ THUYẾT 75. B BÀI TẬP VÀ CÁC DẠNG TOÁN 75. + Dạng 1. Rút gọn biểu thức chứa dấu giá trị tuyệt đối 75. + Dạng 2. Giải các phương trình chứa giá trị tuyêt đối 76. C BÀI TẬP VỀ NHÀ 85. §13 – ÔN TẬP CHƯƠNG IV 88. A Trọng tâm kiến thức 88. B Các dạng bài tập và phương pháp giải 88. + Dạng 1. Chứng minh bất đẳng thức 88. + Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x) 89. + Dạng 3. Giải bất phương trình 90. + Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối 92. C BÀI TẬP VỀ NHÀ 103. §14 – Định lý Ta-lét 105. A Tóm tắt lý thuyết 105. B Bài tập và các dạng toán 106. + Dạng 1. Viết tỉ số các cặp đoạn thẳng hoặc tính tỉ số của hai đoạn thẳng 106. + Dạng 2. Sử dụng định lý Ta-lét để tính độ dài đoạn thẳng hoặc chứng minh đoạn thẳng tỉ lệ 107. C Bài tập về nhà 109. D BÀI TẬP TỰ LUYỆN 110. §15 – Định lý đảo và hệ quả của định lý Ta-lét 111. A Tóm tắt lý thuyết 111. B Bài tập và các dạng toán 112. + Dạng 1. Sử dụng hệ quả của định lý Ta-lét để tính độ dài đoạn thẳng 112. + Dạng 2. Sử dụng định lý Ta-lét đảo để chứng minh các đường thẳng song song 113. + Dạng 3. Sử dụng hệ quả định lý Ta-lét để chứng minh các hệ thức, các đoạn thẳng bằng nhau 114. C Bài tập về nhà 115. D BÀI TẬP TỰ LUYỆN 117. §16 – Tính chất của đường phân giác của tam giác 120. A Tóm tắt lý thuyết 120. B Bài tập và các dạng toán 121. + Dạng 1. Sử dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng 121. + Dạng 2. Sử dụng tính chất đường phân giác của tam giác để tính tỉ số, chứng minh các hệ thức, các đoạn thẳng bằng nhau, các đường thẳng song song 122. C Bài tập về nhà 124. D BÀI TẬP TỰ LUYỆN 126. §17 – Khái niệm hai tam giác đồng dạng 128. A Tóm tắt lý thuyết 128. B Bài tập và các dạng toán 129. + Dạng 1. Chứng minh hai tam giác đồng dạng 129. + Dạng 2. Tìm tỉ số đồng dạng, tính độ dài cạnh, chứng minh đẳng thức cạnh thông qua tam giác đồng dạng 130. C Bài tập về nhà 131. D BÀI TẬP TỰ LUYỆN 133. §18 – Trường hợp đồng dạng thứ nhất 135. A Tóm tắt lý thuyết 135. B Bài tập và các dạng toán 135. + Dạng 1. Chứng minh hai tam giác đồng dạng 135. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau 136. C Bài tập về nhà 137. D BÀI TẬP TỰ LUYỆN 138. §19 – Trường hợp đồng dạng thứ hai 139. A Tóm tắt lý thuyết 139. B Bài tập và các dạng toán 140. + Dạng 1. Chứng minh hai tam giác đồng dạng 140. + Dạng 2. Sử dụng trường hợp đồng dạng thứ hai để tính độ dài cạnh hoặc chứng minh các góc bằng nhau 141. C Bài tập về nhà 142. D BÀI TẬP TỰ LUYỆN 144. §20 – Trường hợp đồng dạng thứ ba 146. A Tóm tắt lý thuyết 146. B Bài tập và các dạng toán 146. + Dạng 1. Chứng minh hai tam giác đồng dạng 146. + Dạng 2. Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh, hoặc chứng minh các góc bằng nhau 147. C Bài tập về nhà 148. D BÀI TẬP TỰ LUYỆN 149. §21 – Các trường hợp đồng dạng của tam giác vuông 151. A Tóm tắt lý thuyết 151. B Bài tập và các dạng toán 152. + Dạng 1. Chứng minh hai tam giác vuông đồng dạng 152. + Dạng 2. Sử dụng trường hợp đồng dạng của tam giác vuông tính độ dài cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau 153. + Dạng 3. Tỉ số diện tích của hai tam giác đồng dạng 154. C Bài tập về nhà 155. D BÀI TẬP TỰ LUYỆN 156. §22 – ÔN TẬP CHƯƠNG III 158. A Tóm tắt lý thuyết 158. B Bài tập và các dạng toán 158. C Bài tập về nhà 161. D Đề kiểm tra chương III 163. §23 – Hình hộp chữ nhật 167. A Tóm tắt lý thuyết 167. B Bài tập và các dạng toán 168. + Dạng 1. Nhận biết các đỉnh, các cạnh và các mặt của hình hộp chữ nhật 168. + Dạng 2. Nhận biết vị trí tương đối của hai đường thẳng, của đường thẳng với mặt phẳng và của hai mặt phẳng của hình hộp chữ nhật 170. + Dạng 3. Tính toán các số liệu liên quan đến cạnh, mặt của hình hộp chữ nhật 171. C Bài tập về nhà 173. §24 – Thể tích của hình hộp chữ nhật 175. A Tóm tắt lý thuyết 175. B Bài tập và các dạng toán 175. + Dạng 1. Nhận biết quan hệ vuông góc giữa đường thẳng và mặt phẳng trong hình hộp chữ nhật 175. + Dạng 2. Tính thể tích hình hộp chữ nhật và các bài toán liên quan đến cạnh và mặt của hình hộp chữ nhật 176. C Bài tập về nhà 178. §25 – Hình lăng trụ đứng 179. A Tóm tắt lý thuyết 179. B Bài tập và các dạng toán 180. + Dạng 1. Xác định các đỉnh, các cạnh, các mặt và mối quan hệ giữa các cạnh với nhau của hình lăng trụ đứng 180. + Dạng 2. Tính độ dài các cạnh và các đoạn thẳng khác trong hình lăng trụ đứng 183. C Bài tập về nhà 184. §26 – Diện tích xung quanh và thể tích hình lăng trụ đứng 187. A Tóm tắt lý thuyết 187. B Bài tập và các dạng toán 187. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ đứng 187. + Dạng 2. Một số bài toán thực tế trong cuộc sống liên quan đến lăng trụ đứng 189. C Bài tập về nhà 190. §27 – Hình chóp đều và hình chóp cụt đều 193. A Tóm tắt lí thuyết 193. B Bài tập và các dạng toán 195. + Dạng 1. Nhận biết các kiến thức cơ bản hình chóp đều 195. + Dạng 2. Tính độ dài các cạnh của hình chóp đều 196. C Bài tập về nhà 197. §28 – Diện tích xung quanh và thể tích của hình chóp đều 198. A Tóm tắt lí thuyết 198. B Bài tập và các dạng toán 199. + Dạng 1. Các bài toán về diện tích xung quanh, diện tích toàn phần và thể tích của hình chóp đều 199. + Dạng 2. Các bài toán cơ bản về mối quan hệ giữa hình lập phương, hình hộp chữ nhật với hình chóp đều 201. C Bài tập về nhà 202. §29 – Ôn tập chương 4 203. A Tóm tắt lí thuyết 203. B Bài tập và các dạng toán 203. C Bài tập về nhà 206. §30 – Đề kiểm tra chương 4 207. A Đề số 1 207. B Đề số 2 210.

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập biểu thức đại số lớp 8 môn Toán Chân Trời Sáng Tạo
Nội dung Phân dạng và bài tập biểu thức đại số lớp 8 môn Toán Chân Trời Sáng Tạo Bản PDF - Nội dung bài viết Phân dạng và bài tập đại số lớp 8 môn Toán Chân Trời Sáng TạoChương 1: ĐA THỨC NHIỀU BIẾNBài tập: Phân dạng và bài tập đại số lớp 8 môn Toán Chân Trời Sáng Tạo Tài liệu này được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi và bao gồm phân dạng và bài tập chủ đề biểu thức đại số trong chương trình môn Toán lớp 8 sách Chân Trời Sáng Tạo. Tài liệu gồm tổng cộng 272 trang, chia thành các chương nhỏ để giúp học sinh dễ dàng tiếp cận và hiểu bài hơn. Chương 1: ĐA THỨC NHIỀU BIẾN Chương này bao gồm bài học về đơn thức và đa thức nhiều biến, trong đó học sinh sẽ học về cách xác định đơn thức, đa thức, cách thu gọn đơn thức, xác định bậc của đa thức và nhiều khái niệm khác. Bài tập: Đơn thức và đa thức: Bài tập giúp học sinh nhận biết đơn thức và đa thức, tính tích các đơn thức và tìm bậc của đơn thức. Phép cộng, trừ hai đa thức nhiều biến: Bài tập này giúp học sinh thực hành phép cộng, trừ hai đa thức nhiều biến. Chương này cung cấp các dạng bài tập và phương pháp giải cụ thể để học sinh có thể nắm vững kiến thức. Bên cạnh đó, có các bài tập vận dụng giúp học sinh áp dụng kiến thức vào các bài toán thực tế, từ đó rèn luyện và phát triển kỹ năng giải bài toán. Trong tài liệu còn liệt kê các hằng đẳng thức đáng nhớ và cách vận dụng chúng vào phân tích đa thức thành nhân tử. Bài tập và ví dụ rõ ràng, cụ thể giúp học sinh hiểu bài một cách dễ dàng và chắc chắn. Đây thực sự là tài liệu hữu ích dành cho học sinh lớp 8 trong việc nắm vững kiến thức đại số và phát triển kỹ năng giải bài toán một cách hiệu quả.
Bồi dưỡng năng lực và phát triển tư duy học lớp 8 môn Toán
Nội dung Bồi dưỡng năng lực và phát triển tư duy học lớp 8 môn Toán Bản PDF - Nội dung bài viết Bồi dưỡng năng lực và phát triển tư duy học lớp 8 môn Toán Bồi dưỡng năng lực và phát triển tư duy học lớp 8 môn Toán Tài liệu này được biên soạn bởi tác giả Toán Họa, gồm 394 trang, cung cấp kiến thức cơ bản, hướng dẫn mẫu, bài tập tự luận và bài tập trắc nghiệm về các chủ đề trong môn Toán lớp 8. The document covers topics such as Đại số 8 – Chương I. Phép nhân và phép chia các đa thức, Đại số 8 – Chương II. Phân thức đại số, Đại số 8 – Chương III. Phương trình bậc nhất một ẩn, Đại số 8 – Chương IV. Bất phương trình bậc nhất một ẩn, Hình học 8 – Chương I. Tứ giác, Hình học 8 – Chương II. Đa giác. Diện tích đa giác, Hình học 8 – Chương III. Tam giác đồng dạng, Hình học 8 – Chương IV. Hình lăng trụ đứng. Hình chóp đều. Tài liệu này sẽ giúp học sinh lớp 8 bồi dưỡng năng lực và phát triển tư duy học Toán, từ các kiến thức cơ bản đến những bài tập nâng cao, giúp họ tự tin hơn khi học môn Toán.
Các chuyên đề học tập lớp 8 môn Toán phần Hình học
Nội dung Các chuyên đề học tập lớp 8 môn Toán phần Hình học Bản PDF - Nội dung bài viết Các chuyên đề học tập lớp 8 môn Toán phần Hình học Các chuyên đề học tập lớp 8 môn Toán phần Hình học Tài liệu này bao gồm 886 trang, đưa ra một cách cụ thể lý thuyết cơ bản và phương pháp giải các bài tập môn Toán lớp 8 phần Hình học. Nội dung bao gồm các trường hợp đồng dạng của tam giác vuông và tam giác thông thường, cũng như cách tính diện tích của các hình khác nhau. Ngoài ra, tài liệu còn giải thích về định lý Talet đảo và hệ quả của nó, đường trung bình của hình thang và tam giác, cũng như các tính chất cơ bản của các hình học phổ biến như hình bình hành, hình chữ nhật, hình thang cân, hình thang, hình thoi, hình vuông và tứ giác. Các khái niệm và tính chất cơ bản được giải thích một cách dễ hiểu để giúp học sinh nắm vững kiến thức và áp dụng trong việc giải các bài tập thực hành.
Các chuyên đề học tập lớp 8 môn Toán phần Đại số
Nội dung Các chuyên đề học tập lớp 8 môn Toán phần Đại số Bản PDF - Nội dung bài viết Các Chuyên Đề Học Tập Lớp 8 Môn Toán Phần Đại Số Các Chuyên Đề Học Tập Lớp 8 Môn Toán Phần Đại Số Bộ tài liệu này bao gồm tổng cộng 360 trang, tập trung vào việc trình bày lý thuyết quan trọng và phương pháp giải các dạng bài tập phổ biến trong môn Toán phần Đại số. Nội dung của tài liệu được thiết kế để giúp học sinh hiểu rõ hơn về những kiến thức cơ bản và áp dụng chúng vào việc giải các bài tập một cách hiệu quả.