Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 - 2021 sở GDĐT Cần Thơ

Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi THPT cấp thành phố môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ được biên soạn theo hình thức đề thi tự luận 100%, đề gồm 01 trang với 07 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ : + Tại một buổi liên hoan tri ân khách hàng của một công ty, Ban tổ chức phát hành 900 tấm vé trúng thưởng, mỗi tấm vé được ghi một số nguyên, liên tiếp từ 100 đến 999. Khách đến tham dự, chọn ngẫu nhiên các tấm vé này. Nếu chọn được tấm vé có ghi số lẻ và chia hết cho 9 thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1500 đồng. Nếu chọn được tấm vé có ghi các số còn lại thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1000 đồng. Hỏi tổng số tiền Ban tổ chức dùng để trao thưởng cho khách hàng là bao nhiêu? + Cô An dự định xây một cái bể có thể tích bằng 18 m3 dùng để dự trữ nước mưa. Biết bể này không có nắp và có dạng một khối lăng trụ lục giác đều. Hỏi cô An phải thiết kế cạnh đáy của bể trên dài bao nhiêu mét để tổng diện tích phần phải xây là nhỏ nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC (không có góc tù) nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong góc A. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C, biết B(5;0), I(-1/2;1), E(-1;0) và A có tung độ âm.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre Bản PDF Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre (dành cho hệ THPT) gồm 04 câu tự luận, học sinh có 180 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bến Tre để thành lập đội tuyển học sinh giỏi Toán lớp 12 cấp tỉnh, tham dự kỳ thi HSG Toán THPT cấp Quốc gia, các em đạt giải cũng sẽ là tấm gương trong học tập cho học sinh toàn tỉnh, lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre : + Bạn An có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q trong đó p và q là các số nguyên tố cùng nhau, tìm q – p. [ads] + Cho hình chóp S.ABC, có SA vuông góc với mặt phẳng (ABC), SA = 2a và tam giác ABC vuông tại C với AB = 2a, góc BAC = 30 độ. Gọi M là điểm di động trên cạnh AC, đặt AM = x (0 ≤ x ≤ a√3). Tính khoảng cách từ S đến BM theo a và x. Tìm các giá trị của x để khoảng cách này lớn nhất. + Cho hàm số y = (x + 1)/(2x – 1) có đồ thị (C). Viết phương trình tiếp tuyến (d) của đồ thị (C) biết (d) cắt trục Ox, Oy lần lượt tại A, B sao cho AB = OA√10 (với O là gốc tọa độ).
Đề thi học sinh giỏi lớp 12 môn Toán năm 2019 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2019 sở GD ĐT TP Hồ Chí Minh Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán lớp 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh, kỳ thi vừa được diễn ra vào sáng nay (thứ Ba ngày 05 tháng 03 năm 2019), đề thi được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài thi Toán là 120 phút (không kể thời gian giám thị coi thi phát đề). Thông qua kỳ thi chọn HSG Toán lớp 12 này, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP. HCM) sẽ tuyển chọn được các em học sinh khối 12 giỏi môn Toán đang sinh sống và học tập trên địa bàn thành phố HCM, qua đó thành lập đội tuyển HSG Toán lớp 12 tham dự kỳ thi HSG Toán THPT cấp Quốc gia năm 2019, ngoài ra, các em đạt giải trong kỳ thi lần này còn được tuyên dương, khen thưởng để làm tấm gương học tập cho các em học sinh khác. [ads] Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh : + Cho hàm số y = (x^2 – 1)^2 có đồ thị (C). Xét điểm M di chuyển trên (C) và có hoành độ m thuộc (-1;1). Tiếp tuyến của (C) ở M cắt (C) tại hai điểm A, B phân biệt và khác M. Tìm giá trị lớn nhất của từng độ trung điểm I của đoạn thẳng AB. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân ở A với BC = 2a và hình chiếu của A’ lên mặt phẳng (ABC) trùng với trung điểm BC. Biết rằng diện tích của tứ giác BCC’B’ bằng 6a^2. a) Tính theo a thể tích của hình lăng trụ đã cho. b) Tính theo a thể tích của hình trụ nhỏ nhất có hai đáy lần lượt nằm trên hai mặt phẳng (ABC), (A’B’C’) và chứa toàn bộ lăng trụ đã cho bên trong. + Cho các số thực a, b, c < (1;+∞) thỏa mãn a^10 ≤ b và log_a b + 2log_b c + 5log_c a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2log_a c + 5log_b c + 10log_b a.
Đề thi HSG lớp 12 môn Toán cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh
Nội dung Đề thi HSG lớp 12 môn Toán cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh Bản PDF Nhằm tuyển chọn các em học sinh khối lớp 12 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán lớp 12 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán lớp 12 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, đề gồm 07 trang, học sinh làm bài thi trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi HSG Toán lớp 12 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Một chiếc ô tô mới mua năm 2016 với giá 800 triệu đồng. Cứ sau mỗi năm, giá chiếc ô tô này bị giảm 5%. Hỏi đến năm 2020, giá tiền chiếc ô tô này còn khoảng bao nhiêu? A. 651.605.000 đồng. B. 685.900.000 đồng. C. 619.024.000 đồng. D. 760.000.000 đồng. + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5 học sinh trường THPT Thuận Thành 1 (Bắc Ninh) và 5 học sinh trường THPT Thuận Thành 2 (Bắc Ninh) vào bàn nói trên. Tính xác suất để bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau. + Cho hình nón (N) có bán kính đáy bằng 6 và chiều cao bằng 12. Mặt cầu (S) ngoại tiếp hình nón (N) có tâm là I. Một điểm M di động trên mặt đáy của nón (N) và cách I một đoạn bằng 6. Quỹ tích tất cả các điểm M tạo thành đường cong có tổng có độ dài bằng? File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 12 môn Toán năm 2018 2019 cụm trường THPT huyện Yên Dũng Bắc Giang
Nội dung Đề thi HSG lớp 12 môn Toán năm 2018 2019 cụm trường THPT huyện Yên Dũng Bắc Giang Bản PDF Đề thi HSG Toán lớp 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang mã đề 121, đề được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 40 câu, chiếm 40% số điểm, phần tự luận gồm 03 câu, chiếm 60% số điểm, học sinh làm bài thi trong 120 phút. Trích dẫn đề thi HSG Toán lớp 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang : + Một trường THPT tại huyện Yên Dũng – Bắc Giang có 18 học sinh đạt giải học sinh giỏi cấp tỉnh, trong đó có 11 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên 6 học sinh trong số các học sinh trên đi tham quan học tập tại Hà Nội. Tính xác suất để có ít nhất một học sinh nam và một học sinh nữ được chọn. [ads] + Cho dãy số (un) được xác định bởi: u1 = 2, un = 2un-1 + 3n – 1. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng a2^n + bn + c, với a, b, c là các số nguyên, n ≥ 2; n thuộc N. Khi đó tổng a + b + c có giá trị bằng? + Gọi S là tập hợp các số tự nhiên có 3 chữ số được lập từ tập X = {0; 1; 2; 3; 4; 5; 6; 7}.Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước. File WORD (dành cho quý thầy, cô):