Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Quận 7 - TP. HCM

Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Quận 7 – TP. HCM gồm 2 trang với 8 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 14 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Quận 7 – TP. HCM : + Vào ngày lễ “Black Friday”, cửa hàng hoa của chị Hạnh đã quyết định giảm giá 20% cho một bó hoa hướng dương và nếu khách hàng mua 10 bó trở lên thì từ bó thứ 10 trở đi khách hàng sẽ chỉ phải trả một nửa giá đang bán. a) Một công ty muốn đặt hoa cho buổi khai trương, công ty đã đặt 30 bó hoa hướng dương. Tính tổng số tiền công ty phải trả, biết rằng giá bán ban đầu của một bó hoa hướng dương là 60.000 đồng. b) Một khách hàng đã mua hoa hướng dương ở tiệm chị Hạnh và tổng số tiền khách hàng này đã trả là 648.000 đồng. Hỏi khách hàng này đã mua bao nhiêu bó hoa? [ads] + Một người đang đi trên thuyền ở giữa biển cách ngọn hải đăng 150m và nhìn thấy ngọn hải đăng với góc nâng là 15 độ. Hỏi chiều cao của ngọn hải đăng là bao nhiêu? (kết quả làm tròn đến mét) + Cho rằng tỉ trọng người cao tuổi ở Việt Nam được xác định bởi hàm số R = 11 + 0,32t, trong đó R tính bằng %, t tính bằng số năm kể từ năm 2011. a. Hãy tính tỉ trọng người cao tuổi vào năm 2011 và 2050. b. Để chuyển từ giai đoạn già hóa dân số (tỉ trọng người cao tuổi chiếm 11%) sang giai đoạn dân số già (tỉ trọng người cao tuổi chiếm 20%) thì Australia mất 73 năm, Hoa Kỳ mất 69 năm, Canada mất 65 năm. Em hãy tính xem Việt Nam mất khoảng bao nhiêu năm? (làm tròn đến năm). Tốc độ già hóa của Việt Nam nhanh hay chậm so với các nước trên?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bến Tre
Đề thi HK1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bến Tre gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trich dẫn đề thi HK1 Toán 9 : + Cho hàm số y = (2m + 1)x – 6 có đồ thị (d). a. Với giá trị nào của m thì hàm số đồng biến trên R. b. Tìm m để đồ thị hàm số (d) đã cho đi qua điểm A(1; 2). c. Vẽ (d) khi m = -2. [ads] + Một cột đèn cao 7m có bóng trên mặt đất dài 4m. Gần đó có một tòa nhà cao tầng có bóng trên mặt đất dài 80m (như hình vẽ). Em hãy cho biết tòa nhà đó có bao nhiêu tầng, biết rằng mỗi tầng cao 2m. + Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC) biết góc ACB bằng 60 độ, CH = a. Tính độ dài AB và AC theo a.
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tứ Kỳ - Hải Dương
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tứ Kỳ – Hải Dương gồm 5 bài toán tự luận, thoiwfgian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho hàm số bậc nhất: y = (k – 2)x + k^2 – 2k; (k là tham số) 1. Vẽ đồ thị hàm số khi k = 1. 2. Tìm k để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2. + Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. [ads] 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2√PE.QF = EF
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tam Đảo - Vĩnh Phúc
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tam Đảo – Vĩnh Phúc gồm 6 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2 a) Chứng minh tam giác BHO = tam giác CHO (2 cạnh góc vuông) Suy ra OB = OC Suy ra OC = R Suy ra C thuộc (O, R). Chứng minh tam giác ABO = tam giác ACO (c.g.c) Suy ra góc ABO = góc ACO Mà AB là tiếp tuyến của (O, R) nên AB ⊥ BO Suy ra góc ABO = 90 độ, suy ra góc ACO = 90 độ Nên AC vuông góc với CO Do đó AC là tiếp tuyến của (O, R). [ads] b) Chứng minh: Tam giác OHK đồng dạng với tam giác OIA Suy ra OH/OI = OK/OA, suy ra OH.OA = OI.OK Tam giác ABO vuông tại B có BH vuông góc với BO Suy ra BO^2 = OH.OA = OH = R^2 Vậy OH.OA = OI.OK = R^2
Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D