Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 2 - Trần Công Dũng

Tài liệu gồm 95 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 2, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : PHẦN I Đại số 3. Chương 1 Hệ hai phương trình bậc nhất một ẩn 5. A Phương trình bậc nhất hai ẩn số 5. I Tóm tắt lý thuyết 5. II Phương pháp giải toán 6. III Bài tập luyện tập 7. B Hệ hai phương trình bậc nhất hai ẩn 9. I Tóm tắt lí thuyết 9. II Các dạng toán 9. C Giải hệ phương trình bằng phương pháp thế 12. I Tóm tắt lí thuyết 12. II Phương pháp giải toán 12. + Dạng 1. Giải hệ phương trình 12. + Dạng 2. Sử dụng hệ phương trình giải toán 15. D Giải hệ phương trình bằng phương pháp cộng 17. I Tóm tắt lí thuyết 17. II Các dạng toán 18. + Dạng 1. Giải hệ phương trình 18. + Dạng 2. Sử dụng hệ phương trình giải toán 20. III Bài tập luyện tập 20. E Giải bài toán bằng cách lập hệ phương trình 22. I Tóm tắt lí thuyết 22. II Các dạng toán 22. + Dạng 1. Bài toán chuyển động 22. + Dạng 2. Bài toán vòi nước 24. Chương 2 Hàm số y = ax2. Phương trình bậc hai một ẩn số 27. A Hàm số y = ax2 (a khác 0) 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. B Đồ thị hàm số y = ax2 (a khác 0) 28. I Tóm tắt lí thuyết 28. II Phương pháp giải toán 29. C Phương trình bậc hai một ẩn số 32. I TÓM TẮT LÍ THUYẾT 32. II PHƯƠNG PHÁP GIẢI TOÁN 32. III BÀI TẬP LUYỆN TẬP 34. D Công thức nghiệm của phương trình bậc hai 35. I Tóm tắt lí thuyết 35. II Các dạng toán 35. + Dạng 1. Giải phương trình bậc hai 36. + Dạng 2. Điều kiện có nghiệm của phương trình bậc hai. 37. + Dạng 3. Nghiệm nguyên và nghiệm hữu tỉ của phương trình bậc hai 39. III Bài tập luyện tập 39. E HỆ THỨC VI-ÉT VÀ CÁC ỨNG DỤNG 41. I TÓM TẮT LÍ THUYẾT 41. + Dạng 1. Nhẩm nghiệm của phương trình bậc hai 42. + Dạng 2. Tìm hai số biết tổng và tích của chúng 44. + Dạng 3. Tìm giá trị của biểu thức đối xứng giữa các nghiệm 48. + Dạng 4. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số 49. + Dạng 5. Xét dấu các nghiệm 52. + Dạng 6. Tìm giá trị của tham số để các nghiệm của phương trình thỏa mãn điều kiện cho trước 54. F PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI 59. I Phương pháp giải toán 59. + Dạng 1. Giải phương trình tích 59. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai 60. + Dạng 3. Giải phương trình chứa ẩn ở mẫu 60. + Dạng 4. Giải phương trình bậc ba 61. + Dạng 5. Giải phương trình trùng phương 62. + Dạng 6. Giải phương trình hồi quy và phản hồi quy 63. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m (1) với a + b = c + d 64. + Dạng 8. Phương trình dạng (x + a)4 + (x + b)4 = c (1) 65. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối 65. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức 66. II Bài tập 66. G GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH 70. I Tóm tắt lí thuyết 70. II Phương pháp giải toán 70. + Dạng 1. Bài toán chuyển động 70. + Dạng 2. Bài toán về số và chữ số 71. + Dạng 3. Bài toán vòi nước 72. + Dạng 4. Bài toán có nội dung hình học 72. + Dạng 5. Bài toán về phần trăm – năng suất 73. III Bài tập luyện tập 74. PHẦN II Hình học 75. Chương 3 Góc với đường tròn 77. A Góc ở tâm – Số đo cung 77. I Tóm tắt lí thuyết 77. II Phương pháp giải toán 77. III Bài tập tự luyện 78. B Liên hệ giữa cung và dây 79. I Tóm tắt lí thuyết 79. II Phương pháp giải toán 79. III Bài tập tự luyện 80. C Góc nội tiếp 80. I Tóm tắt lí thuyết 80. II Các dạng toán 81. + Dạng 1. Giải bài toán định lượng 81. + Dạng 2. Giải bài toán định tính 82. D Góc tạo bởi tiếp tuyến và dây cung 84. I Tóm tắt lí thuyết 84. II Các dạng toán 84. + Dạng 1. Giải bài toán định tính 84. + Dạng 2. Giải bài toán định lượng 85. III Bài tập tự luyện 85. E Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn 86. I Tóm tắt lý thuyết 86. II Phương pháp giải toán 87. III Bài tập luyện tập 88.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán
Nội dung Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán Bản PDF - Nội dung bài viết Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn ToánPhần I: Đại sốPhần II: Hình học Tóm tắt lý thuyết, các dạng toán và bài tập lớp 9 môn Toán Đối với học sinh lớp 9, tài liệu này gồm 666 trang với tóm tắt lý thuyết, các dạng toán và bài tập môn Toán. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và tự kiểm tra kiến thức của mình. Phần I: Đại số Chương 1 của phần này bao gồm các nội dung về căn bậc hai và căn bậc ba, bao gồm các phép tính căn bậc hai, căn thức bậc hai và các hằng đẳng thức quen thuộc. Học sinh sẽ học về liên hệ giữa phép nhân và phép khai phương, phép chia và phép khai phương, biến đổi biểu thức chứa căn thức bậc hai và rút gọn biểu thức. Chương 2 là về hàm số bậc nhất, bao gồm khái niệm về hàm số, đồ thị của hàm số bậc nhất và các kiến thức liên quan. Chương 3 và chương 4 lần lượt là về hệ hai phương trình bậc nhất hai ẩn và hàm số y = ax2 (a khác 0) cùng các phương trình bậc hai một ẩn và ứng dụng của chúng. Phần II: Hình học Chương 1 bao gồm hệ thức lượng trong tam giác vuông, với nội dung về hệ thức lượng, tỷ số lượng giác, hệ thức về cạnh và góc trong tam giác vuông. Chương 2 tập trung vào đường tròn, bao gồm các tính chất đặc biệt, đường kính và dây của đường tròn, cũng như vị trí tương đối giữa đường tròn và đường thẳng. Chương 3 và chương 4 lần lượt là về góc với đường tròn và các hình học đặc biệt như hình trụ, hình nón và hình cầu, với các công thức tính diện tích xung quanh và thể tích của chúng. Thông qua tài liệu này, học sinh lớp 9 sẽ có cơ hội học tập và ôn tập kiến thức môn Toán một cách dễ dàng và hiệu quả. Tài liệu cung cấp đầy đủ lời giải chi tiết để giúp học sinh hiểu rõ hơn về từng bước giải và áp dụng kiến thức vào thực tế.
Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân
Nội dung Chuyên đề căn bậc hai và căn bậc ba Diệp Tuân Bản PDF - Nội dung bài viết Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu Chuyên đề căn bậc hai và căn bậc ba của thầy Diệp Tuân Bộ tài liệu này được biên soạn bởi thầy giáo Diệp Tuân và bao gồm 127 trang, nhằm giúp học sinh lớp 9 nắm vững kiến thức về căn bậc hai và căn bậc ba trong chương trình Toán lớp 9. Bộ tài liệu cung cấp tóm tắt lý thuyết, phân loại dạng bài và bài tập minh họa cho các chuyên đề sau: BÀI 1. CĂN BẬC HAI - Dạng 1: Tìm căn bậc hai của một số hoặc tìm số có căn bậc hai đã cho. - Dạng 2: So sánh hai số có liên quan đến căn bậc hai. - Dạng 3: Tìm giá trị của x theo điều kiện cho trước. BÀI 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC - Xác định điều kiện để căn bậc hai có ý nghĩa. - Tính giá trị của biểu thức chứa căn bậc hai. - Giải phương trình, phân tích đa thức thành nhân tử. BÀI 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG - Thực hiện các phép tính liên quan đến phép nhân và phép khai phương. - Phân tích đa thức thành nhân tử và giải phương trình. BÀI 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG - Thực hiện phép chia và phép khai phương trong các bài tập. - Giải phương trình và chứng minh bất đẳng thức. BÀI 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức và so sánh phân số. BÀI 7. TRỤC CĂN THỨC Ở MẪU - Khử mẫu của biểu thức chứa căn và so sánh các số. BÀI 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI - Rút gọn biểu thức, chứng minh đẳng thức và tìm giá trị biểu thức tại điểm x. BÀI 9. CĂN BẬC BA - Thực hiện các phép tính liên quan đến căn bậc ba và giải phương trình. Bộ tài liệu này sẽ giúp học sinh lớp 9 hiểu rõ hơn về căn bậc hai và căn bậc ba thông qua lý thuyết, ví dụ minh họa và bài tập thực hành.
Phân dạng và bài tập lớp 9 môn Toán
Nội dung Phân dạng và bài tập lớp 9 môn Toán Bản PDF - Nội dung bài viết Tài liệu Toán lớp 9 - Phân dạng và bài tậpMục lục:Chương 1: Đại sốChương 2: Hàm số bậc nhấtChương 3: Hệ hai phương trình bậc nhất hai ẩn Tài liệu Toán lớp 9 - Phân dạng và bài tập Tài liệu này gồm tổng cộng 103 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan. Tài liệu tập trung vào việc phân dạng và tuyển chọn các bài tập Toán cho học sinh lớp 9. Mục lục: Chương 1: Đại số Bài 1: Căn bậc hai - Căn thức bậc hai - Tóm tắt lí thuyết và các dạng bài tập như tìm điều kiện để biểu thức có nghĩa, tính giá trị biểu thức, rút gọn biểu thức, giải phương trình. Bài 2: Liên hệ giữa phép khai phương và phép nhân, phép chia - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh bất đẳng thức. Bài 3: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh đẳng thức. Bài 4: Rút gọn biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận. Bài 5: Căn bậc ba - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, chứng minh đẳng thức, so sánh hai số, giải phương trình. Bài 6: Ôn tập chương I Chương 2: Hàm số bậc nhất Bài 1: Khái niệm hàm số - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hàm số bậc nhất - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Ôn tập chương II Chương 3: Hệ hai phương trình bậc nhất hai ẩn Bài 1: Phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 4: Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và các dạng bài tập khác nhau. Bài 5: Ôn tập chương III
Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0)
Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0)A. Các kiến thức cần nhớB. Bài tập áp dụng Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0) Trong tài liệu này, bạn sẽ được giới thiệu đến kiến thức cơ bản về hàm số và đồ thị hàm số y = ax^2 (a khác 0) trong chương trình môn Toán lớp 9. Tài liệu bao gồm 20 trang, bao gồm các kiến thức cần nhớ, các dạng toán và bài tập thực hành có đáp án và lời giải chi tiết. Để hiểu rõ hơn về chủ đề này, hãy cùng điểm qua một số điểm chính sau: A. Các kiến thức cần nhớ Tính chất của hàm số y = ax^2 (a khác 0): Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Đồ thị của hàm số y = ax^2 (a khác 0): Đồ thị của hàm số y = ax^2 (a khác 0) là một parabol với đỉnh tại gốc tọa độ O. Vị trí của đồ thị so với trục hoành phụ thuộc vào giá trị của a. B. Bài tập áp dụng Tài liệu cung cấp nhiều bài tập áp dụng để bạn thực hành và mở rộng kiến thức: Tính giá trị của hàm số tại một điểm cho trước. Xét tính đồng biến, nghịch biến của hàm số. Vẽ đồ thị hàm số y = ax^2 (a khác 0). Giải bài toán liên quan đến sự tương giao giữa đồ thị và đường thẳng. Ngoài ra, tài liệu còn kèm theo một bộ bài tập về nhà để bạn tự rèn luyện và nắm vững kiến thức. Hãy cẩn thận và kiên nhẫn khi làm bài tập, sẽ không có gì là khó khăn nếu bạn cố gắng. Chúc bạn học tốt!