Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán liên trường THPT - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Bảy ngày 14 tháng 01 năm 2023; đề thi có đáp án mã đề 122. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán liên trường THPT – Nghệ An : + Hội chợ Xuân ở thành phố Vinh có một dãy gồm 15 gian hàng lưu niệm liên tiếp nhau. Một doanh nghiệp X bốc thăm chọn ngẫu nhiên 4 gian hàng trong 15 gian hàng trên để trưng bày sản phẩm. Xác suất để trong 4 gian hàng chọn được của doanh nghiệp X có đúng 3 gian hàng kề nhau bằng? + Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, BAC = 60 độ. Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P) (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN. + Trong hệ trục tọa độ Oxyz, cho ba điểm A(5;–2;0), B(4;5;–2) và C(0;3;2). Điểm M di chuyển trên trục Ox. Đặt Q = 2|MA + MB + MC| + 3|MB + MC|. Biết giá trị nhỏ nhất của Q có dạng ab trong đó a, b thuộc R và b là số nguyên tố. Tính a + b.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải - Thái Bình lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải – Thái Bình lần 3 mã đề 202 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thí sinh có 90 phút để làm bài, kỳ thi thử Toán được tổ chức vào ngày 09/06/2018 nhằm tạo điều kiện để các em củng cố lại kiến thức đã ôn tập trong suốt thời gian qua, trong thời điểm kỳ thi còn khoảng 1 tuần nữa sẽ diễn ra, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải – Thái Bình lần 3 : + Một đề thi môn Toán có 50 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án trả lời, trong đó có đúng một phương án là đáp án. Học sinh chọn đúng đáp án được 0, 2 điểm, chọn sai đáp án không được điểm. Một học sinh làm đề thi đó, chọn ngẫu nhiên các phương án trả lời của tất cả 50 câu hỏi, xác suất để học sinh đó được 5,0 điểm bằng? [ads] + Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^2 = 9, điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ. Biết rằng thể tích khối chóp S.ABCD bằng a^3.√2/3. Khoảng cách giữa hai đường thẳng SB và AC bằng?
Đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh - Bắc Ninh lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh – Bắc Ninh lần 3 mã đề 602 được biên soạn nhằm tạo điều kiện để các em học sinh 12 củng cố và nâng cao kiến thức, kỹ năng giải toán trong thời điểm kỳ thi THPT Quốc gia 2018 đã cận kề, đề gồm 06 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh – Bắc Ninh lần 3 : + Trong các mệnh đề sau, mệnh đề nào sai? A. Mọi hàm số liên tục trên K đều có nguyên hàm trên K. B.Nếu F(x), G(x) là hai nguyên hàm của hàm số f(x) thì F(x) + G(x) = C, với C là một hằng số. C. Nếu F(x) là một nguyên hàm của hàm số f(x) thì F(x) + 1 cũng là một nguyên hàm của hàm số f(x). D. Nếu F(x) là một nguyên hàm của hàm số f(x) thì ∫fxdx = F(x) + C, với C là một hằng số. [ads] + Cho hai số thực b; c (c > 0). Kí hiệu A; B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm của phương trình z^2 + 2bz + c = 0, tìm điều kiện của b và c sao cho tam giác OAB là tam giác vuông (với O là gốc tọa độ). + Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại B với AB = 3, AA’ = 2 . Gọi M là trung điểm cạnh A’B, G là trọng tâm tam giác ABC, (a) là mặt phẳng đi qua MG và song song với BC. Tính khoảng cách d từ điểm A đến mặt phẳng (a).
Đề thi thử Toán THPTQG 2018 trường chuyên Lê Thánh Tông - Quảng Nam lần 3
Đề thi thử Toán THPTQG 2018 trường chuyên Lê Thánh Tông – Quảng Nam lần 3 mã đề 131 được biên soạn nhằm giúp các em học sinh ôn tập, củng cố và nâng cao kiến thức – kỹ năng giải toán để có thể đạt được điểm số tốt nhất trong kỳ thi THPT Quốc gia 2018 môn Toán, đề được biên soạn bám sát đề minh họa của Bộ GD và ĐT với cấu trúc 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút.
Đề thi thử Toán THPTQG 2018 trường THPT Newton - Hà Nội lần 7
Đề thi thử Toán THPTQG 2018 trường THPT Newton – Hà Nội lần 7 mã đề 123 được biên soạn bám sát đề tham khảo môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 6 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Newton – Hà Nội lần 7 : + Một hội nghị gồm 6 đại biểu nước A; 7 đại biểu nước B và 7 đại biểu nước C trong đó mỗi nước có hai đại biểu là nữ. Chọn ngẫu nhiên ra 4 đại biểu, xác suất để chọn được 4 đại biểu để mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng? [ads] + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau đúng 5 năm người đó mới rút lãi thì số tiền lãi người đó nhận được gần nhất với số tiền nào dưới đây? nếu trong khoảng thời gian này người này không rút tiền ra và lãi suất không thay đổi. + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 độ. Gọi A’, B’, C’ lần lượt là các điểm đối xứng của A, B, C qua S. Thể tích của khối đa diện ABC.A’B’C’ bằng?