Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội

Nội dung Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Trong kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội năm 2019, môn Toán đã được tổ chức vào Chủ Nhật ngày 26 tháng 05. Đề thi bao gồm 4 bài toán dạng tự luận, thời gian làm bài được giới hạn trong 120 phút. Một trong những bài toán được trích dẫn từ đề tuyển sinh là về hình vuông ABCD và đường tròn (O) nội tiếp hình vuông ABCD. Để giải bài toán này, thí sinh cần chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. Tiếp theo, thí sinh cần chứng minh rằng giao điểm của đường thẳng FB và đường tròn (O) là trung điểm của đoạn thẳng BG. Bài toán còn yêu cầu chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). Bài toán thứ hai yêu cầu tìm giá trị nhỏ nhất của biểu thức M = (x^2 + 4)/(y^2 + 1), với điều kiện 1 ≤ y ≤ 2, xy + 2 ≥ 2y. Cuối cùng, bài toán cuối cùng đưa ra một phương trình đối với các số nguyên x, y, và yêu cầu tìm tất cả các cặp số nguyên thỏa mãn phương trình đó. Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN Hà Nội năm 2019 là một thách thức đối với các em học sinh làm Toán. Để đạt điểm cao trong kỳ thi, thí sinh cần chuẩn bị kỹ lưỡng và thực hành nhiều bài tập.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội: + Cho một bảng ô vuông kích thước 6 x 7 được tạo bởi các ô vuông kích thước 1 x 1. Tô màu vào các ô sao cho trong mỗi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô được tô màu đen có chung cạnh. Gọi m là số ô vuông được tô màu đen, hỏi có bao nhiêu cách tô sao cho m = 20 và tìm giá trị nhỏ nhất của m? + Cho tam giác ABC có ba góc nhọn và AB < AC. Khi gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn ngoại tiếp trong góc A, chân các đường thẳng vuông góc từ I đến BC, CA, AB lần lượt là D, E, F. Đường thẳng AD cắt (I) tại M. Đường thẳng qua K song song với AD cắt BC tại N. Chứng minh tam giác MFD đồng dạng với tam giác BNK, góc BMF bằng góc DMP và đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của KN. + Cho đa thức P(x) thỏa P(1) = 3 và P(3) = 7. Tìm đa thức dư khi chia P(x) cho x^2 - 4x + 3.
Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên)
Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Bình Dương (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 10 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương: + Cho tam giác ABC cân tại A (BAC > 90 độ) nội tiếp đường tròn (O) bán kính R. Điểm M nằm trên cạnh BC sao cho BM = CM. Gọi D là giao điểm của AM và đường tròn (O) sao cho D khác A, H là trung điểm của BC. Gọi E là điểm chính giữa cung lớn BC, ED cắt BC tại N. a) Chứng minh rằng MA.MD = MB.MC và BN.CM = BM.CN. b) Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Chứng minh rằng ba điểm B, I, E thẳng hàng. c) Khi 2AB = R, xác định vị trí của M để 2MA + AD đạt giá trị nhỏ nhất. + Với các số thực x, y thỏa mãn 1 ≤ x ≤ y ≤ 5. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x^2 + y^2) + 4(x - y - xy) + 7. + Tìm tất cả các số nguyên x, y thỏa mãn phương trình x^2 + xy + y^2 = x^2.y^2.
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu bao gồm 01 trang có 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu: + Cho Parabal có phương trình: y = 3x2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất.
Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu
Nội dung Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu Bản PDF Đề thi vào lớp 10 môn Toán (chung) năm học 2020 - 2021 của trường chuyên Lê Quý Đôn - Lai Châu là một đề thi khá thú vị và đầy thách thức. Đề thi gồm 6 bài toán dạng tự luận, đòi hỏi học sinh phải có kiến thức sâu và khả năng suy luận logic tốt. Thời gian làm bài là 150 phút, cho phép học sinh có đủ thời gian để làm bài một cách cẩn thận và chính xác.Trong đề thi có những câu hỏi khá phức tạp như việc chứng minh tứ giác nội tiếp, tính toán vận tốc ban đầu của ô tô, hoặc tìm giá trị lớn nhất của biểu thức sinh học. Những bài toán như vậy không chỉ đòi hỏi kiến thức vững chắc mà còn cần có sự tỉ mỉ và khéo léo trong việc suy luận và tính toán.Việc giải quyết đề thi này không chỉ là việc thử thách kiến thức và khả năng của học sinh mà còn giúp họ rèn luyện kỹ năng tư duy logic và khả năng xử lý vấn đề. Với một đề thi như vậy, học sinh sẽ có cơ hội thể hiện khả năng và kiến thức của mình một cách toàn diện và nâng cao kỹ năng tự học và tự giải quyết vấn đề.Cuối cùng, việc học sinh giải quyết thành công đề thi này không chỉ là để đạt điểm cao mà còn là để phát triển bản thân và chuẩn bị cho những thách thức trong tương lai. Chúc các em học sinh may mắn và thành công trong kỳ thi sắp tới!