Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2022 - 2023 trường chuyên Lương Thế Vinh - Đồng Nai

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2022 – 2023 trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai. Trích dẫn đề HSG Toán 10 năm 2022 – 2023 trường chuyên Lương Thế Vinh – Đồng Nai : + Cho tam giác ABC không cân nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I), (I) tiếp xúc BC, CA, AB lần lượt tại D, E, F. Giả sử DE; AB cắt nhau tại X và DF; AC cắt nhau tại Y và S trên BC sao cho IA; IS vuông góc nhau. Lấy M, N lần lượt là trung điểm của XF, YE. a) Chứng minh OI và MN vuông góc nhau. b) Chứng minh ba đường thẳng MN, EF và AS đồng quy. c) Lấy điểm K thoả KN // IC; KM // IB. Chứng minh đường thẳng qua K song song OI chia đôi EF. + Với mỗi số nguyên dương n, đặt an = 2^(n3 + 1) – 3^(n2 + 1) + 5^(n + 1). a) Tìm tất cả các số nguyên tố p sao cho có vô hạn giá trị nguyên dương n mà an không chia hết cho p. b) Chứng minh rằng: tồn tại vô hạn số nguyên tố p sao cho có giá trị nguyên dương n mà an chia hết cho p. + Cho 2n số thực đôi một khác nhau a1, a2, …, an; b1, b2, …, bn. Viết các số vào bảng n × n như sau: Ở ô (i;j) (hàng i và cột j) là số (ai + bj). Đặt pij = (bj + a1)(bj + a2)…(bj + an) là tích các số trên cột thứ i. Xét đa thức P(x) = (x + a1)(x + a2)…(x + an) và giả sử pi1 = pi2 = … = pin = C. a) Chứng minh rằng đa thức P(x) – C là tích của n đa thức bậc nhất có hệ số ứng với x là 1. b) Chứng minh tích tất cả các số trên mỗi hàng cũng bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.