Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn dãy số, giới hạn hàm số và hàm số liên tục - Diệp Tuân

Tài liệu gồm 156 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các bài tập chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục (Đại số và Giải tích 11 chương 4). Khái quát nội dung tài liệu giới hạn dãy số, giới hạn hàm số và hàm số liên tục – Diệp Tuân: BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Chứng minh dãy số có giới hạn là 0. Dạng 2. Dùng định nghĩa chứng minh dãy số (un) có giới hạn hữu hạn L. Dạng 3. Tìm giới hạn của dãy (un) có giới hạn hữu hạn bằng quy tắc, định lý. + Bài toán 1. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (với P(n) và Q(n) là hai đa thức). + Bài toán 2. Dãy (un) là một phân thức dạng un = P(n)/Q(n) (với P(n) và Q(n) là các biểu thức chứa căn của n). + Bài toán 3. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n) và Q(n) là các biểu thức chứa hàm mũ). Dạng 4. Tính giới hạn mà dãy (un) cho dưới dạng công thức truy hồi. Dạng 5. Tính giới hạn dựa vào định lý kẹp. Dạng 6. Giới hạn có kết quả là vô cực. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Tìm giới hạn của hàm số tại một điểm bằng quy tắc, định lý. + Bài toán 1. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là đa thức theo biến x. + Bài toán 2. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là các biểu thức có chứa căn thức theo x. + Bài toán 3. Thêm bớt số hạng hoặc một biểu thức vắng để khử được dạng vô định (khử căn bậc hai và bậc ba). Dạng 3. Tìm giới hạn của hàm số khi x → ±∞. + Bài toán 1. Giới hạn hữu hạn lim P(x).Q(x) với lim P(x) = L và lim Q(x) = ±∞. + Bài toán 2. Giới hạn hữu hạn hữu tỉ lim P(x)/Q(x) (bậc tử bé hơn hoặc bằng bậc mẫu). + Bài toán 3. Giới hạn vô cực lim P(x)/Q(x) (bậc tử lớn hơn bậc mẫu). + Bài toán 4. Giới hạn vô cực dạng vô định ∞ – ∞. + Bài toán 5. Giới hạn vô cực dạng vô định 0.∞. Dạng 4. Tìm giới hạn của hàm số các hàm đặc biệt. [ads] BÀI 3 . GIỚI HẠN MỘT BÊN. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Chứng minh sự tồn tại của giới hạn. BÀI 4 . HÀM SỐ LIÊN TỤC. Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Bài toán 1. Cho hàm số f(x) = f1(x) khi x khác x0 và f(x) = f2(x) khi x = x0. + Bài toán 2. Cho hàm số f(x) = f1(x) khi x < x0 và f(x) = f2(x) khi x ≥ x0. Dạng 2. Xét tính liên tục của hàm số trên R. Dạng 3. Chứng minh phương trình có nghiệm. + Bài toán 1. Cho phương trình f(x) = 0. Chứng minh phương trình có nghiệm. + Bài toán 2. Chứng minh phương trình có chứa tham số m luôn có nghiệm với mọi m. + Bài toán 3. Chứng minh phương trình có chứa tham số m luôn có nghiệm dương hoặc nghiệm âm với mọi m.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Giới hạn - Lư Sĩ Pháp
Tài liệu gồm 75  trang bao gồm phần lý thuyết cần nắm ở mỗi bài học, bài tập có hướng dẫn giải, bài tập tự luyện và bài tập trắc nghiệm chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục. §1. GIỚI HẠN CỦA DÃY SỐ 1. Giới hạn hữu hạn của dãy số 2. Giới hạn vô cực của dãy số 3. Các giới hạn đặc biệt của dãy số 4. Định lí về giới hạn hữu hạn của dãy số 5. Một vài quy tắc tìm giới hạn vô cực của dãy số 6. Tổng cấp số nhân lùi vô hạn của dãy số 7. Định lí kẹp về giới hạn của dãy số 8. Phương pháp tìm giới hạn của dãy số 9. Phương pháp tính tổng của cấp số nhân lùi vô hạn [ads] §2. GIỚI HẠN CỦA HÀM SỐ 1. Giới hạn hữu hạn của hàm số 2. Giới hạn vô cực của hàm số 3. Định lí vể giới hạn hữu hạn của hàm số 4. Các giới hạn đặc biệt của hàm số 5. Quy tắc về giới hạn vô cực của hàm số 6. Khử các dạng vô định về giới hạn vô cực của hàm số §3. HÀM SỐ LIÊN TỤC BÀI TẬP TRẮC NGHIỆM GIỚI HẠN CỦA DÃY SỐ VÀ HÀM SỐ, HÀM SỐ LIÊN TỤC 
Chuyên đề giới hạn của dãy số - Huỳnh Ái Hằng
Tài liệu gồm 19 trang hướng dẫn giải các bài toán giới hạn của dãy số thông qua các ví dụ minh họa có lời giải chi tiết và các bài tập trắc nghiệm ôn luyện có đáp án. I – Lý thuyết 1. Định lí 1 2. Các phép toán + Định lý 1: Nguyên lý Weierstrass + Định lý 2: Định lý kẹp giữa +Các kết quả quan trọng [ads] 3. Một và quy tắc tìm giới hạn dãy số II – Bài tập trắc nghiệm minh họa Gồm 28 bài có giải chi tiết III – Bài tập trắc nghiệm tự luyện Gồm 71 bài có đáp án
Phân dạng và các phương pháp giải toán chuyên đề giới hạn - Trần Đình Cư
Tài liệu gồm 55 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề giới hạn, các bài tập trong tài liệu được giải chi tiết. Nội dung tài liệu: BÀI 1. GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Sử dụng định nghĩa tìm giới hạn 0 của dãy số Dạng 2. Sử dụng định lí để tìm giới hạn 0 của dãy số Dạng 3. Sử dụng các giới hạn đặc biệt và các định lý để giải các bài toán tìm giới hạn dãy Dạng 4. Sử dụng công thức tính tổng của một cấp số nhân lùi vô hạn, tìm giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số Dạng 5. Tìm giới hạn vô cùng của một dãy bằng định nghĩa Dạng 6. Tìm giới hạn của một dãy bằng cách sử dụng định lý, quy tắc tìm giới hạn vô cực MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 2. GIỚI HẠN HÀM SỐ Dạng 1. Dùng định nghĩa để tìm giới hạn Dạng 2. Tìm giới hạn của hàm số bằng công thức Dạng 3. Sử dụng định nghĩa tìm giới hạn một bên Dạng 4. Sử dụng định lý và công thức tìm giới hạn một bên [ads] Dạng 5. Tính giới hạn vô cực Dạng 6. Tìm giới hạn của hàm số thuộc dạng vô định 0/0 Dạng 7. Dạng vô định Dạng 8. Dạng vô định MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 3. HÀM SỐ LIÊN TỤC Dạng 1. Xét tính liên tục của hàm số f(x) tại điểm x0 Dạng 2. Xét tính liên tục của hàm số tại một điểm Dạng 3. Xét tính liên tục của hàm số trên một khoảng K Dạng 4. Tìm điểm gián đoạn của hàm số f(x) Dạng 5. Chứng minh phương trình f(x)=0 có nghiệm MỘT SỐ BÀI TẬP LÝ THUYẾT {Tham khảo}
Chuyên đề giới hạn của dãy số - Nguyễn Quốc Tuấn
Tài liệu gồm 31 trang, trình bày lý thuyết, phương pháp giải và bài tập trắc nghiệm chuyên đề giới hạn của dãy số với 2 dạng toán thường gặp: Dạng 1: Tìm giới hạn của dãy số Loại 1: Giới hạn của dãy số hữu tỉ + Nếu bậc của tử lớn hơn bậc của mẫu thì giới hạn đó bằng ±∞ + Nếu bậc của tử bằng bậc của mẫu thì giới hạn đó bằng hệ số bậc cao nhất của tử trên hệ số bậc cao nhất của mẫu + Nếu bậc của tử bé hơn bậc của mẫu thì giới hạn đó bằng 0 Điều này rất cần thiết cho tất cả chúng ta giải bài toán giới hạn dạng hữu tỉ khi giải trắc nghiệm. Bởi vì một giới hạn hữu tỉ khi nhìn vào ta hoàn toàn có thể biết được kết quả ngay lập tức [ads] Loại 2: Giới hạn của dãy có căn thức Nếu dãy số có chứa căn thức mà không có dạng hữu tỉ để xét bậc, thì ta tiến hành nhân thêm lượng liên hiệp để tính giới hạn. Nhưng đồng thời các em cũng sử dụng nhận xét ở tính giới hạn hữu tỉ. Sau khi nhân thêm lượng liên hiệp ta cũng có thể sử dụng nhận xét về giới hạn của dãy số hữu tỉ để có thể tính giới hạn nhanh hơn Loại 3: Dãy số chứa lũy thừa – mũ Tương tự như dãy hữu tỉ, ta tiến hành chia tử và mẫu cho mũ với cơ số lớn nhất. Cũng tương tự giới hạn của dãy số hữu tỉ. Ta cũng hoàn toàn có thể tự nhẩm được kết quả của giới hạn dãy số dạng này. Bằng cách quan sát hệ số của những số mũ với cơ số lớn nhất ở tử và mẫu. Từ đó ta hoàn toàn có thể tính nhanh để thực hiện những bài toán giới hạn dưới dạng trắc nghiệm Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa