Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh

Nội dung Đề KSCL lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 2 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán lớp 11 lần 2 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Mệnh đề nào sau đây đúng? A. Hàm số y x cot là hàm số chẵn và là hàm số lẻ trên tập hợp. B. Hàm số y x cot là hàm số lẻ trên tập hợp. C. Hàm số y x cot là hàm số chẵn trên tập hợp. D. Hàm số y x cot không là hàm số chẵn và không là hàm số lẻ trên tập hợp. + Trong các khẳng định sau, khẳng định nào sai? A. Qua 3 điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. B. Qua 1 đường thẳng và 1 điểm bất kỳ có duy nhất một mặt phẳng. C. Qua 2 đường thẳng cắt nhau có duy nhất một mặt phẳng. D. Qua 2 đường thẳng song song có duy nhất một mặt phẳng. + Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 7 học sinh nam và 4 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lần 2 Toán 11 năm 2023 - 2024 trường THPT Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Yên Lạc, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 501. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2023 – 2024 trường THPT Yên Lạc – Vĩnh Phúc : + Trong mặt phẳng (α) cho tam giác ABC vuông tại A biết 0 B AB a 60. Gọi O là trung điểm của BC. Lấy điểm S ở ngoài mặt phẳng (α) sao cho SB a SB OA. Gọi M là điểm trên cạnh AB. Mặt phẳng (α) qua M song song với SB và OA cắt BC SC SA lần lượt tại N PQ. Đặt BM x a. Xác định x để diện tích thiết diện của hình chóp với mặt phẳng (α) là lớn nhất. + Cường độ dòng điện i (ampe) qua một mạch điện xoay chiều được tính bởi công thức 10 2 cos 4 t i π trong đó t là thời gian tính bằng giây. Xác định thời điểm đầu tiên cường độ dòng điện bằng 5 2 ampe. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số 4 y x xm sin cos 2 bằng 2. Số phần tử của S là?
Đề khảo sát lần 1 Toán 11 năm 2023 - 2024 trường THPT Thạch Thành 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn thi Toán 11 năm học 2023 – 2024 trường THPT Thạch Thành 2, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán 11 năm 2023 – 2024 trường THPT Thạch Thành 2 – Thanh Hóa : + Cho một bài toán có sơ đồ như sau: Để giải bài toán khi muốn chọn 1 thực đơn gồm 1 loại đồ uống và 1 loại cơm ta dùng: A. quy tắc nhân. B. kết hợp quy tắc cộng và quy tắc nhân. C. quy tắc cộng. D. chỉnh hợp. + Anh An canh gác ở ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng cách AB km 4. Trên bờ biển có một cái chợ ở vị trí C cách B một khoảng 7km. Anh An chèo thuyền từ ngọn hải đăng A đến vị trí M trên bờ biển với vận tốc 3 km h rồi đi bộ đến C với vận tốc 5 km h. Biết rằng khoảng cách từ vị trí A đến M là a km và thời gian anh An đi từ A đến C (qua M) là 148 phút. Khi đó giá trị của biểu thức 2 8 a P bằng? + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kĩ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 23,6 triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 2,5 triệu đồng mỗi quý. Hãy tính tổng số tiền lương một kĩ sư nhận được sau 3 năm làm việc cho công ty.
Đề thi KSCL lần 1 Toán 11 năm 2023 - 2024 trường THPT Nông Cống 3 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 711 – 712 – 713 – 714. Trích dẫn Đề thi KSCL lần 1 Toán 11 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy. Ở góc phần tư thứ nhất lấy 2 điểm phân biệt, cứ thế ở góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục tọa độ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt hai trục tọa độ. + Bác An làm một cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật. Tìm diện tích lớn nhất của cửa sổ biết chu vi của nó là 2. + Cho bốn số nguyên dương, trong đó ba số đầu lập thành một cấp số cộng, ba số hạng sau thành lập cấp số nhân. Biết rằng tổng của số hạng đầu và số hạng cuối là 37, tổng của hai số hạng giữa là 36. Tìm số hạng thứ tư.
Đề khảo sát lần 1 Toán 11 năm 2023 - 2024 trường THPT Ngô Thì Nhậm - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2023 – 2024 trường THPT Ngô Thì Nhậm, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm mã đề 058. Trích dẫn Đề khảo sát lần 1 Toán 11 năm 2023 – 2024 trường THPT Ngô Thì Nhậm – Ninh Bình : + Nhiệt độ ngoài trời của một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức: 10 h t 28 2cos t π với h tính bằng độ C và t là thời gian trong ngày tính bằng giờ. Gọi a giờ là thời gian của một thành phố trên có nhiệt độ ngoài trời thấp nhất trong ngày. Khi đó a giờ nằm trong khoảng thời gian nào trong các khoảng thời gian sau đây: A. 2 giờ 31 phút đến 4 giờ. B. 4 giờ 30 phút đến 6 giờ. C. 1 giờ đến 2 giờ 30 phút. D. 22 giờ đến 23 giờ 40 phút. + Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5 và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông? + Tìm khẳng định ĐÚNG trong các khẳng định sau: A. Qua hai điểm phân biệt có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. C. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng.