Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang - Hải Dương lần 2

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang – Hải Dương lần 2 mã đề 163 được biên soạn nhằm kiểm tra chất lượng ôn tập môn Toán của học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia 2018, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để hoàn thành đề thi, đề có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Sân vận động Sports Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. Đây là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một Elíp (E) có trục lớn dài 150m, trục bé dài 90m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt Elíp (E) ở M, N (Hình 3) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình 4) với MN là một dây cung và góc MIN = 90 độ. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? [ads] + Bác Tôm có một cái ao có diện tích 50m2 để nuôi cá. Vụ vừa qua bác nuôi với mật độ 20 con/m2 và thu được tất cả 1,5 tấn cá thành phẩm. Theo kinh nghiệm nuôi cá thu được, bác thấy cứ thả giảm đi 8 con/m2 thì tương ứng sẽ có mỗi con cá thành phẩm thu được tăng thêm 0,5kg. Hỏi vụ tới bác phải mua bao nhiêu con cá giống để đạt được tổng khối lượng cá thành phẩm cao nhất? (Giả sử không có hao hụt trong quá trình nuôi). + Do có nhiều cố gắng trong học kỳ 1 năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái Laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào ngày 1 tháng 1 năm 2018) với lãi suất 1% trên tháng, đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1 tháng 2 năm 2018) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi ra và tiền lãi được cộng vào vốn cho tháng sau, chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1 tháng 2 năm 2018 mà bạn Hoa có đủ tiền để mua Laptop?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường Châu Thành 2 - Đồng Tháp lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường Châu Thành 2 – Đồng Tháp lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số (C) tại giao điểm của (C) với trục hoành, biết hoành độ tiếp điểm x < 0. Câu 3: a) Tìm môđun của số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt phẳng (Q) qua M, N và song song với mp(P). b) Tìm tọa độ M’ đối xứng với M qua mặt phẳng (P). Câu 6: a) Giải phương trình lượng giác. b) Tính xác suất sao cho trong 4 tàu được chọn có cả tàu kiểm ngư; tàu cảnh sát biển và tàu của ngư dân. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách từ N đến mặt phẳng (SBM). Câu 8: Giải hệ phương trình. Câu 9: Tính diện tích tứ giác ABKC. Câu 10: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Đông Sơn 1 - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Đông Sơn 1 – Thanh Hóa lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. b) Tìm m để hàm số có 3 điểm cực trị. Câu 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm tập hợp các điểm biểu diễn của số phức z thỏa mãn điều kiện. b) Giải phương trình mũ. Câu 4: Tính thể tích khối tròn xoay được tạo thành khi quay H quanh trục hoành. Câu 5: Viết phương trình mặt phẳng (Q) đi qua A, B đồng thời vuông góc với (P) và tìm điểm C thuộc (P) sao cho tam giác ABC là tam giác đều. Câu 6: a) Giải phương trình lượng giác. b) Giả sử thí sinh A chọn ngẫu nhiên các phương án. Tính xác suất để A được 4 điểm (lấy gần đúng đến 5 chữ số sau dấu phẩy). Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SC và AB. Câu 8: Tìm tọa độ các điểm A, B, C. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Lương Văn Cù - An Giang
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Lương Văn Cù – An Giang có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ bằng 3. Câu 3: a) Tìm số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Tính khoảng cách giữa hai điểm A và B. Viết phương trình mặt phẳng (a) đi qua A và song song với mặt phẳng (P). Câu 6: a) Biến đổi thành tích biểu thức lượng giác. b) Một trường Đại học dự kiến tuyển sinh dựa vào tổng điểm của 3 môn trong kì thi chung đó và có ít nhất một trong hai môn là Toán hoặc Văn. Hỏi trường Đại học đó có bao nhiêu phương án tuyển sinh?. Câu 7: Tính theo a thể tích khối chóp S.ABC. Xác định góc a để thể tích khối chóp S.ABC lớn nhất . Câu 8: Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. Câu 9: Giải hệ phương trình. Câu 10: Chứng minh bất đẳng thức.
Đề thi thử Quốc gia 2016 môn Toán trường Quảng Xương 3 - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Quảng Xương 3 – Thanh Hóa lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm các điểm cực trị của đồ thị hàm số. Câu 3: a) Giải bất phương trình logarit. b) Giải phương trình mũ. Câu 4: Tính nguyên hàm Câu 5: Chứng minh trung điểm I của cạnh SC là tâm của mặt cầu ngoại tiếp hình chóp S ABC . và tính diện tích mặt cầu đó theo a. Câu 6: a) Giải phương trình lượng giác. b) Tính xác suất sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A. Câu 7: Tính theo a thể tích khối chóp S ABCD và khoảng cách giữa hai đường thẳng HK và SD. Câu 8: Tìm tọa độ đỉnh D. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 2 biến P.