Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Trị

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Trị Bản PDF Thứ Sáu ngày 05 tháng 11 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi lớp 12 và chọn đội tuyển dự thi Quốc gia môn Toán năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Trị gồm 02 bài thi, bài thi vòng 1 gồm 04 câu tự luận, thời gian làm bài 180 phút, bài thi vòng 2 gồm 04 câu tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Với mỗi n nguyên dương, xét phương trình nghiệm nguyên 3×2 – y2 = 23^n. Chứng minh rằng: a) Nếu n là số chẵn thì phương trình trên vô nghiệm. b) Nếu n là số lẻ thì phương trình trên có nghiệm. + Cho tam giác ABC nội tiếp đường tròn (O). Các điểm D, E thuộc đường thẳng BC sao cho AD vuông góc OB và AE vuông góc OC. Gọi M, N lần lượt là trung điểm AC, AB; G là giao điểm của EM và DN; S là giao điểm của OG và BC. Chứng minh rằng: a) Tam giác ACE đồng dạng với tam giác BCA. b) Đường thẳng SA là tiếp tuyến của đường tròn (O). + Trong một giải đấu bóng bàn nam có n (n >= 3) vận động viên tham gia, hai vận động viên bất kỳ thi đấu với nhau đúng 1 trận (không có kết quả hòa). Kết thúc giải đấu, mỗi vận động viên sẽ viết ra tên những đối thủ thua mình và tên những vận động viên thua một trong các đối thủ đó. Một vận động viên được gọi là vô địch tương đối nếu anh ta viết được tên của tất cả n – 1 vận động viên còn lại. Gọi Sn là số vận động viên vô địch tương đối nhiều nhất có thể. a) Tính S3, S4. b) Chứng minh rằng Sn = n với mọi n >= 5.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 12 lần 4 năm 2022 - 2023 trường THPT Giao Thủy - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi môn Toán 12 THPT lần 4 năm học 2022 – 2023 trường THPT Giao Thủy, tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (Thí sinh chọn một đáp án viết câu trả lời vào tờ giấy thi) và Phần II: Viết đáp án (Thí sinh viết câu trả lời vào tờ giấy thi theo hàng dọc, viết rõ đơn vị nếu có); thời gian làm bài: 120 phút; đề thi có ma trận, đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán 12 lần 4 năm 2022 – 2023 trường THPT Giao Thủy – Nam Định : + Một cuộn đề can hình trụ có đường kính 44,9 cm. Trong thời gian diễn ra AFF cup 2018, người ta đã sử dụng để in các băng rôn, khẩu hiệu cổ vũ cho đội tuyển Việt Nam, do đó đường kính của cuộn đề can còn lại là 12,5 cm. Biết độ dày của tấm đề can là 0,06 cm, hãy tính chiều dài L của tấm đề can đã sử dụng? (Làm tròn đến hàng đơn vị). + Người ta nối trung điểm các cạnh của một hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác ở các góc của hình hộp như hình vẽ bên. Hình còn lại là một đa diện có số đỉnh và số cạnh là A. đỉnh cạnh. B. đỉnh cạnh. C. đỉnh cạnh. D. đỉnh cạnh. + Cho đồ thị hàm số và như hình vẽ bên. Biết đồ thị của hàm số là một Parabol đỉnh có tung độ bằng và là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là thỏa mãn. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số và gần nhất với giá trị nào dưới đây?
Đề thi chọn học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (thí sinh chọn một đáp án và ghi vào tờ giấy thi) và Phần II: Viết đáp án (viết câu trả lời vào tờ giấy thi theo hàng dọc, viết đơn vị nếu có), thời gian làm bài: 120 phút; đề thi có đáp án MÃ ĐỀ 201 MÃ ĐỀ 202 MÃ ĐỀ 203 MÃ ĐỀ 204. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho hai hình cầu có bán kính lần lượt là r cm 1 5 và r cm 2 10 tiếp xúc với nhau. Một hình nón (N) có các đường sinh tiếp xúc với hai hình cầu và có mặt đáy tiếp xúc với hình cầu lớn như hình vẽ. Diện tích xung quanh của hình nón (N) bằng? + Cho khối trụ T có trục OO’, bán kính r = 6 và thể tích là V. Cắt khối trụ T thành hai phần bởi mặt phẳng song song với trục và cách trục OO’ một khoảng bằng 3 (tham khảo hình vẽ). Gọi V1 là thể tích phần không chứa trục OO’. Tính tỉ số V1/V. + Cho hàm số 43 2 f x mx nx px qx r. Biết rằng đồ thị hàm số y fx cắt trục hoành tại ba điểm có hoành độ abc theo thứ tự lập thành cấp số cộng có công sai d > 0. Gọi S là tập hợp các nghiệm của phương trình 2 d fx fb. Hỏi tập S có bao nhiêu phần tử?
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bến Tre : + Cho hàm số y = (m − 3)x3 + mx2 + (m + 1)x + 9. Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên R. Cho phương trình x4 − 4×3 + 8x = k (với k là tham số thực). a) Giải phương trình với k = 5. b) Tìm tất cả các số nguyên k để phương trình có 4 nghiệm phân biệt. + Trong 1600 thí sinh dự thi Kỳ thi chọn học sinh giỏi cấp tỉnh ngày 9/3/2023, người ta lập ra các nhóm như sau: Chọn k thí sinh trong 1600 thí sinh và trong k thí sinh đó chọn ra 1 thí sinh làm nhóm trưởng (1 ≤ k ≤ 1600). Hỏi có tất cả bao nhiêu cách lập ra các nhóm như trên. + Cho hình lập phương ABCD.A0B0C0D0 có độ dài cạnh bằng a. Trên đoạn AD0 lấy điểm M, trên đoạn BD lấy điểm N sao cho AM = DN = x, với 0 < x < a√2. Chứng minh độ dài đoạn MN ngắn nhất khi x = a√23. Khi đó, tính độ dài đoạn MN. a) Cho tứ diện ABCD. Chứng minh rằng (AB + CD)2 + (AD + BC)2 > (AC + BD)2.
Đề thi học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Với m là tham số thực, xét các phương trình: 2 2 2 log log 2023 0 x x m (1) và 1 3 3 y y m (2). a) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm phân biệt lớn hơn 1. b) Tìm tất cả các giá trị của m sao cho phương trình (2) có hai nghiệm phân biệt dương. c) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm 1 x 2 x và phương trình (2) có hai nghiệm 1 y 2 y; đồng thời, nếu xét các điểm A x y 1 1 và B x y 2 2 trong hệ trục tọa độ Oxy thì tam giác OAB vuông tại O. + Cho hàm số 4 2 2 2 x f x x có đồ thị (C). Tìm tất cả các điểm M thuộc (C) sao cho tiếp tuyến tại M của (C) cắt (C) tại hai điểm phân biệt A, B khác M và MA MB 3. + Xét hàm số 3 3 3 2 2023 3 2 2022 x x f x x x và gọi S là tập hợp các số nguyên có giá trị tuyệt đối không vượt quá 28. Chọn ngẫu nhiên hai số a b S với a b. Tính xác suất để hàm số f x đồng biến trên khoảng a b.