Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Hãy cùng xem qua một số câu hỏi trong đề thi nhé: Cho một nhóm Địa y phát triển trên một khoảng đất hình tròn và có mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y theo công thức: d = 7t − 12 (với t ≥ 12). Biết vào năm 2022, đường kính của một nhóm Địa y là 42mm, hãy tính xem băng trên dòng sông đó đã tan vào năm nào? Trong tam giác vuông cân MNP ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. Hãy chứng minh rằng HMN = KPM và MAP là tam giác cân với AH vuông góc AK. Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bể là 34 cm. Hãy tính thể tích của tiểu cảnh đó. Hy vọng rằng các em sẽ làm tốt các câu hỏi trong đề thi này. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi giao lưu học sinh giỏi môn Toán 7 năm học 2018 – 2019 phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thư hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Tính diện tích của mỗi hình chữ nhật đó. + Xét hình bên: Ta viết các số 1, 2, 3, 4,..9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hai cách viết được gọi là như nhau nếu bộ số viết ở các điểm (A;B;C;D;E;F;G;H;K) của mỗi cách là trùng nhau. Hỏi có bao nhiêu cách viết phân biệt ? Tại sao? + Tìm số hữu tỉ x sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên.
Đề khảo sát HSG huyện Toán 7 năm 2018 - 2019 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát học sinh giỏi huyện môn Toán 7 năm học 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG huyện Toán 7 năm 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt các tia AB tại E và AC tại F. Vẽ tia BM song song với EF (M AC). a) Chứng minh ABM cân. b) Chứng minh: MF = BE = CF. c) Qua D vẽ đường thẳng vuông góc với BC cắt tia AH tại I. Chứng minh: IF AC. + Tìm số tự nhiên có ba chữ số, biết rằng số đó là bội của 18 và các chữ số của nó tỷ lệ theo 1: 2: 3. + Ba đường cao của một tam giác có độ dài là 4; 12 và a. Tìm số tự nhiên a.
Đề học sinh giỏi huyện Toán 7 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề khảo sát chọn HSG Toán 7 năm 2018 - 2019 phòng GDĐT Xuân Trường - Nam Định
Đề khảo sát chọn HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 đang học tập tại các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán 7 để tham dự kỳ thi học sinh Toán 7 cấp tỉnh, đề thi có lời giải chi tiết.