Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam

Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:
- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.
1. Chứng minh OM // BN và MC = NO.
2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.
3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.
- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.
- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.

File WORD (dành cho quý thầy, cô): Download here

Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Sytu xin gửi đến quý thầy cô và các em học sinh Đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trong Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 của sở GD&ĐT Khánh Hòa, có những câu hỏi thú vị và đa dạng: 15 học sinh từ trường THCS X tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, có các kích thước cụ thể. Yêu cầu tính thể tích phần đất nung của một viên gạch dựa trên công thức đã cho. Đề tài khám phá về tam giác và tứ giác, yêu cầu chứng minh các tính chất phức tạp của các hình học. Phần cuối của Đề tuyển sinh đề cập đến các vấn đề liên quan đến hình học không gian và tính chất của các hình học phức tạp, đòi hỏi học sinh cần phải có kiến thức sâu rộng và suy luận logic tốt. Với nội dung đa dạng và phong phú như vậy, Đề tuyển sinh vào môn Toán năm 2023 2024 của sở GD ĐT Khánh Hòa không chỉ giúp học sinh ôn tập kiến thức một cách hiệu quả mà còn giúp họ phát triển kỹ năng tư duy logic và giải quyết vấn đề. Chúc quý thầy cô và các em học sinh chuẩn bị tốt cho kỳ thi sắp tới!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Chào quý thầy cô và các bạn học sinh, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 06 tháng 06 năm 2023. Cụ thể, đây là một số câu hỏi trong đề thi: 1. Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax - 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm giá trị của a. b) Tìm toạ độ giao điểm của đường thẳng (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). 2. Trong kì thi tuyển sinh vào lớp 10 THPT, hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi công bố kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? 3. Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. a) Chứng minh tứ giác BCEF nội tiếp. b) Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. c) Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn. Hy vọng rằng đề thi này sẽ giúp các bạn học sinh chuẩn bị tốt cho kỳ thi tuyển sinh. Chúc quý thầy cô và các em đạt kết quả cao!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 tỉnh Cao Bằng Đề tuyển sinh môn Toán năm 2023-2024 tỉnh Cao Bằng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Cao Bằng. Kỳ thi sẽ diễn ra vào sáng thứ Ba ngày 06 tháng 06 năm 2023. Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Cao Bằng bao gồm các câu hỏi sau: 1. Một mảnh vườn hình chữ nhật có chu vi là 180m. Nếu tăng chiều rộng mảnh vườn lên thêm 20m và giảm chiều dài đi 20m thì diện tích mảnh vườn không thay đổi. Hãy tính chiều dài và chiều rộng mảnh vườn. 2. Cho tam giác ABC vuông tại A. Biết AC = 8cm; BC = 10cm. a) Tính độ dài cạnh AB. b) Kẻ đường cao AH. Tính độ dài đoạn thẳng HC. 3. Cho đường tròn (O) đường kính AB, trên đoạn thẳng OB lấy điểm C sao cho C không trùng với O và B. Gọi H là trung điểm của AC, kẻ dây cung DE của đường tròn (O) vuông góc với AC tại H. Gọi K là giao điểm của BD với đường tròn đường kính BC. a) Chứng minh tứ giác DHCK là tứ giác nội tiếp. b) Chứng minh ba điểm E, C, K thẳng hàng. Hãy chuẩn bị kỹ lưỡng và tự tin để đối mặt với kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi!
Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bình Phước Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 của sở Giáo dục và Đào tạo thành phố Bình Phước. Kỳ thi này sẽ diễn ra vào ngày 05/06/2023. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bình Phước: Câu 1: Một mảnh vườn hình chữ nhật có diện tích 600m2. Biết rằng nếu tăng chiều dài 10m và giảm chiều rộng 5m thì diện tích không đổi. Hãy tính chiều dài và chiều rộng của mảnh vườn đó. Câu 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết rằng AB = 3cm, C = 30. a) Tính B, AC, AH. b) Trên cạnh BC lấy điểm M sao cho MC = 2MB, tính diện tích tam giác AMC. Câu 3: Cho đường tròn (O) đường kính AB, lấy điểm C thuộc (O) (C khác A và B), tiếp tuyến của đường tròn (O) tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B). a) Chứng minh tứ giác BODK nội tiếp. b) Biết OK cắt BD tại I. Chứng minh rằng OI vuông góc BD và KC.KA = KI.KO. c) Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh rằng H là trung điểm của AI. Hy vọng rằng những câu hỏi trên sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi!