Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 trường Lương Ngọc Quyến - Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán kỳ thi tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi gồm 01 trang, hình thức tự luận với 10 bài toán, thời gian làm bài 120 phút, không kể thời gian phát đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 trường Lương Ngọc Quyến – Thái Nguyên : + Một tổ công nhân dự định làm xong 240 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện, nhờ cải tiến kĩ thuật nên mỗi ngày tổ đã làm tăng thêm 10 sản phẩm so với dự định. Do đó, tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi khi thực hiện, mỗi ngày tổ đã làm được bao nhiêu sản phẩm? + Một tòa nhà có bóng in trên mặt đất dài 16 mét, cùng thời điểm đó một chiếc cọc (được cắm thẳng đứng trên mặt đất) cao 1 mét có bóng in trên mặt đất dài 1,6 mét. a) Tính góc tạo bởi tia nắng mặt trời với mặt đất (đơn vị đo góc được làm tròn đến độ). b) Tính chiều cao của tòa nhà (làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn tâm O đường kính AB, M là điểm chính giữa của cung AB, K là một điểm bất kỳ trên cung nhỏ BM. Gọi H là hình chiếu của điểm M lên đường thẳng AK. a) Chứng minh rằng AOHM là tứ giác nội tiếp. b) Chứng minh OH là tia phân giác của góc MOK.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1
Nội dung Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1 gồm 5 bài toán tự luận với lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0). a. Tìm m để đường thẳng d đi qua điểm A (-1;3). b. Tìm m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho). + Cho đường tròn tâm (O), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H, qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB. Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (O) tại hai điểm E và F. Các tia AE và AF cắt đường thẳng d lần lượt tại M, N. a) Chứng minh tứ giác BEMH nội tiếp đường tròn. b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi. c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang bao gồm 5 bài toán tự luận. Đây là cơ hội để các thí sinh thể hiện kiến thức và kỹ năng giải toán của mình trong bài thi quan trọng này. Đề thi được thiết kế để đánh giá năng lực toán học của học sinh và chắc chắn sẽ đưa ra những câu hỏi thú vị và đa dạng, giúp các thí sinh phát huy tối đa khả năng của mình.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 5 bài toán tự luận, với lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một số bài toán trong đề: Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD Chứng minh tứ giác AOHP nội tiếp được đường tròn Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH Chứng minh đẳng thức: PA^2 = PC.PD BC cắt OP tại J, chứng minh AJ//DB Đề thi gồm nhiều bài toán thú vị và đa dạng, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng suy luận và giải quyết vấn đề một cách hiệu quả.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 6 bài toán tự luận, với lời giải chi tiết. Trong đó, một số bài toán được trích dẫn như sau: 1. Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m, diện tích đám đất tăng thêm 1m2. Hãy tính độ dài các cạnh ban đầu của đám đất. 2. Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D, E, F thẳng hàng c) BC/MD = CA/ME + AB/MF