Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 12 năm 2019 2020 trường THPT Phú Lương Thái Nguyên

Ngày … tháng 06 năm 2020, trường THPT Phú Lương, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2 năm học 2019 – 2020, đánh dấu kết thúc một năm học với nhiều “biến động” do tình hình dịch bệnh. Đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Phú Lương – Thái Nguyên mã đề 122 gồm có 04 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 32 câu, chiếm 08 điểm, phần tự luận gồm 04 câu, chiếm 02 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các mã đề 122, 301, 125, 305. 1. TRẮC NGHIỆM + Định nghĩa nguyên hàm. + Phương pháp tính nguyên hàm. + Tính chất tích phân. + Tính chất tích phân. + Tích phân đổi biến số. + Phương pháp tính tích phân từng phần. + Tính diện tích hình phẳng, thể tích khối tròn xoay. + Tính tích phân hàm ẩn dựa vào định nghĩa, tính chất. + Tính tích phân hàm ẩn đổi biến hoặc từng phần. + Tìm môđun số phức hoặc điểm biểu diễn số phức. + Tìm số phức liên hợp. + Tìm tập hợp điểm biểu diễn số phức. + Tìm số phức nghịch đảo, phép chia hai số phức. + Tìm tập hợp điểm biểu diễn hình học của số phức. + Tìm điều kiện để hai số phức bằng nhau. + Giải phương trình bậc hai. + Tìm hình chiếu một điểm xuống các mặt phẳng tọa độ, hoặc các trục tọa độ, tìm tọa độ các phép toán vectơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. + Tìm tọa độ các phép toán vec tơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. [ads] + Tìm tâm và bán kính mặt cầu. + Viết phương trình mặt cầu. + Viết phương trình mặt phẳng (VTPT tìm được ngay), hoặc theo đoạn chắn. + Viết phương trình mặt phẳng đi qua ba điểm hoặc tìm VTPT qua tích có hướng. + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Điểm thuộc đường thẳng. + Tìm một vec tơ chỉ phương của đương thẳng khi biết phương trình tham số. + Tìm một PTTS đường thẳng khi biết điểm và VTCP (phải kiểm tra hai điều kiện). + Viết phương trình đường thẳng dựa vào điều kiện cho trước (VTCP tìm dễ dàng). + Tìm tọa độ giao điểm hai đường thẳng, tìm điều kiện hai đường thẳng cắt nhau. + Chứng minh rằng hai đường thẳng chéo nhau. + Xét vị trí tương đối đường thẳng và mặt phẳng. + Viết phương trình đường thẳng. 2. TỰ LUẬN + Tính tích phân (đổi biến, hoặc từng phần). + Tìm số phức thỏa mãn điều kiện cho trước. + Viết phương trình đường thẳng hoặc mặt phẳng. + Tìm GTLN và GTNN của môđun số phức.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lạng Giang 3 Bắc Giang
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lạng Giang 3 Bắc Giang Bản PDF Ngày … tháng 06 năm 2020, trường THPT Lạng Giang số 3, tỉnh Bắc Giang tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Lạng Giang 3 – Bắc Giang mã đề 223 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 223, 234, 245, 256. Trích dẫn đề thi HK2 Toán lớp 12 năm 2019 – 2020 trường THPT Lạng Giang 3 – Bắc Giang : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật; SA ⊥ (ABCD), AB = 3a, BC = 4a, SA = 5a. Mặt phẳng (P) đi qua A và vuông góc với SC chia khối chóp S.ABCD thành hai khối đa diện có thể tích lần lượt là V1 và V2, trong đó V1 là thể tích khối đa diện chứa đỉnh S. Tỉ số V1/V2 bằng? + Trong hệ tọa độ Oxyz cho a(1;-1;0) và A(−4;7;3), B(4;4;5). Giả sử M và N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho MN cùng hướng với a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? [ads] + Cho khối chóp S.ABC có SA = SB = SC = a, góc ASB = 60 độ, góc BSC = 90 độ, góc ASC = 120 độ. Gọi M và N lần lượt thuộc cạnh AB và cạnh SC sao cho CN/CS = AM/AB. Khi độ dài đoạn thẳng MN nhỏ nhất, tính thể tích V của khối chóp S.AMN. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Kon Tum
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Kon Tum Bản PDF Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Kon Tum tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán đối với học sinh lớp 12 trong giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum : + Trong không gian Oxyz, cho các điểm A(1;0;0), B(0;b;0), C(0;0;c), trong đó b và c là các số hữu tỉ dương và mặt phẳng (P) có phương trình y – z + 1 = 0. Biết rằng mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng 1/3. Giá trị b + c bằng? + Trong không gian Oxyz, cho ba điểm A(1;1;1), B(−1;2;1), C(3;6;-5). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) thỏa MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất (với a, b, c là các số nguyên). Khi đó a + b + c bằng? [ads] + Cho các số phức z1 = -2 + i và z2 = 2 + i và số phức z thay đổi thỏa mãn |z – z1|^2 + |z – z2|^2. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z. Giá trị biểu thức M^2 – m^2 bằng? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trung Giã Hà Nội
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trung Giã Hà Nội Bản PDF Ngày … tháng 06 năm 2020, trường THPT Trung Giã, huyện Sóc Sơn, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội mã đề 121 và mã đề 122 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;6;2) và B(2;-2;0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;4;4), B(1;0;6), C(0;-1;2) và D(1;1;1). Gọi ∆ là đường thẳng đi qua D sao cho tổng các khoảng cách từ A, B, C đến ∆ là lớn nhất. Đường thẳng ∆ đi qua điểm nào dưới đây? + Đường thẳng y = kx + 4 cắt parabol y = (x – 2)^2 tại hai điểm phân biệt và diện tích các hình phẳng S1, S2 bằng nhau như hình vẽ sau. Mệnh đề nào dưới đây đúng? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Hậu Giang
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Hậu Giang Bản PDF Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hậu Giang tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang mã đề 701 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kỳ 2 Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang : + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính tốc độ truyền bệnh (người/ngày) tại thời điểm t là f'(t) = 90t – 3t^2. Nếu xem f(t) là số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t thì khi dịch đạt đỉnh điểm (tốc độ truyền bệnh lớn nhất) sẽ có khoảng bao nhiêu người nhiễm bệnh? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 3)^2 + (y + 2)^2 + (z – 1)^2 = 100 và mặt phẳng (P): 2x – 2y – z + 9 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C). Giả sử (C) có tâm H(a;b;c) và bán kính r. Có bao nhiêu số dương trong các số a, b, c và r? [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B và C sao cho H(1;2;3) là trực tâm của tam giác ABC. Tính khoảng cách h từ điểm O đến mặt phẳng (P). File WORD (dành cho quý thầy, cô):