Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL THPT Quốc gia 2018 môn Toán trường chuyên Lam Sơn - Thanh Hóa lần 3

Đề thi KSCL THPT Quốc gia 2018 môn Toán trường chuyên Lam Sơn – Thanh Hóa lần 3 mã đề 132 được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi, thời gian làm bài 90 phút, kỳ thi được tổ chức ngày 13/05/2018 nhằm tạo điều kiện để các em được rèn luyện thường xuyên hướng đến kỳ thi THPT Quốc gia 2018 môn Toán, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 chuyên Lam Sơn – Thanh Hóa lần 3 : + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15, …., 100 với vạch chia đều nhau và giả sử răng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau: Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. [ads] + Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;6). Biết rằng có hai điểm M, N phân biệt thuộc trục Ox sao cho các đường thẳng AM, AN cùng tạo với đường thẳng chứa trục Ox một góc 45°. Tổng các hoành độ hai điểm M, N tìm được là? + Hai chiếc ly đựng chất lỏng giống hệt nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thứ hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyền. Tính gần đúng h với sai số không quá 0,01dm).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa - Nghệ An
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Đặng Thúc Hứa, huyện Thanh Chương, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa – Nghệ An mã đề 147 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút.
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên - Hà Nội
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004; kỳ thi được diễn ra vào Chủ Nhật ngày 28 tháng 03 năm 2021. Trích dẫn đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội : + Một bạn sinh viên muốn có một khoản tiền để mua xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong 2 năm cuối đại học. Vào mỗi đầu tháng bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,56% mỗi tháng. Biết đến cuối tháng thứ 24 thì bạn đó có số tiền là 30 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hai đường thẳng x’x, y’y chéo nhau và vuông góc với nhau. Trên x’x lấy cố định điểm A, trên y’y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020cm. Gọi C, D là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = CD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây? + Cho đường thẳng y = 2x và Parabol y = x2 + c (c là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì c gần với số nào nhất sau đây?
Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 03 năm 2021, trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội tổ chức kiểm tra khảo sát thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Một khu rừng có trữ lượng gỗ là 7.106 mét khối. Biết tốc độ sinh trưởng của các cây trong khu rừng đó là 4% mỗi năm. Nếu hàng năm không khai thác thì sau 6 năm khu rừng đó có bao nhiêu mét khối gỗ? + Trong không gian tọa độ Oxyz cho ba điểm A(1; 0; 2), B(2; 3; −1), C(0; 3; 2) và mặt phẳng (P) : x − 2y + 2z − 7 = 0. Khi điểm M thay đổi trên mặt phẳng (P), hãy tìm giá trị nhỏ nhất của biểu thức E = |MA + MB + MC|. + Trong mặt phẳng tọa độ Oxy cho hàm số y = (2x + 2)/(x − 1) có đồ thị (C) và đường thẳng d : y = −x + m (m là tham số). Tìm m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt.
Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long - Quảng Ninh
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong mặt phẳng (a) cho hai tia Ox, Oy góc xOy = 60 độ. Trên tia Oz vuông góc với mặt phẳng (a) tại O, lấy điểm S sao cho SO = a. Gọi M, N là các điểm lần lượt di động trên hai tia Ox, Oy sao cho OM + ON = a (a > 0 và M, N khác O). Gọi H, K lần lượt là hình chiếu vuông góc của O trên hai cạnh SM, SN. Mặt cầu ngoại tiếp đa diện MNHOK có diện tích nhỏ nhất bằng? + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = a3. Mặt bên SAB là tam giác cân và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của AB, K là trung điểm của AD. Khoảng cách giữa hai đường SD và HK bằng? + Cho một đa giác đều có 20 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là các đỉnh của đa giác trên. Xác suất để chọn một tam giác từ tập X là tam giác vuông nhưng không phải là tam giác cân bằng?