Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An

Nội dung Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 vòng 3 năm học 2023-2024 của trường THCS Tân Thành, tỉnh Nghệ An. Đề thi này bao gồm các câu hỏi thú vị và thách thức, kèm theo đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. Hãy chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. Hãy chứng minh rằng BH = AC.cotABC trong tam giác ABC. Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng MP/MQ. Trong một buổi gặp mặt có 294 người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu lượt bắt tay diễn ra? Chứng minh rằng A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0. Đề thi Toán HSG lớp 9 vòng 3 năm 2023-2024 của trường THCS Tân Thành Nghệ An là cơ hội để các em thử thách bản thân, rèn luyện tư duy logic và khả năng giải quyet vấn đề. Chúc các em học sinh thành công và tự tin trước mỗi câu hỏi!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 16 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?