Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 phòng GD ĐT Long Biên – Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 phòng GD ĐT Long Biên – Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 phòng GD ĐT Long Biên – Hà Nội Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 phòng GD ĐT Long Biên – Hà Nội Đề thi học kì 2 môn Toán lớp 9 năm 2018 – 2019 của phòng GD&ĐT Long Biên – Hà Nội bao gồm một trang đề với năm bài toán. Thời gian làm bài là 90 phút. Đề thi này nhằm kiểm tra toàn diện những kiến thức mà học sinh lớp 9 đã học trong học kỳ vừa qua. Đề thi cũng đi kèm với lời giải chi tiết để học sinh có thể tự kiểm tra và nắm vững kiến thức sau khi kết thúc bài thi. Trích dẫn một số câu hỏi từ đề thi: 1. Tham gia phong trào “Thiếu niên sáng tạo”, bạn Trí Bình đã thiết kế được một chiếc mũ vải rộng vành có kích thước như hình vẽ. Hãy tính tổng diện tích vải cần để làm cái mũ đó biết rằng vành mũ hình tròn và ống mũ hình trụ. 2. Cho đường tròn tâm O bán kính R, đường kính AB. Chứng minh một số tính chất liên quan đến tứ giác MNFE nội tiếp và các điểm trong đường tròn. 3. Một trường THCS tổ chức cho 250 người đi tham quan khu du lịch Đảo Ngọc Xanh. Hãy giải quyết vấn đề về số lượng giáo viên và học sinh đi tham quan dựa trên giá vé và chiết khấu từ nhà trường. Đề thi HK2 Toán lớp 9 năm 2018 – 2019 của phòng GD&ĐT Long Biên – Hà Nội là cơ hội để học sinh thể hiện kiến thức và kỹ năng trong môn Toán sau một học kỳ dài học tập. Hy vọng rằng các em sẽ có kết quả tốt trong bài thi này!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 04 năm 2021. Trích dẫn đề thi học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một cơ sở sản xuất dự định làm 1000 chiếc mặt nạ chống giọt bắn trong một thời gian nhất định. Nhờ tăng năng suất lao động nên mỗi ngày cơ sở đó đã làm thêm được 30 chiếc mặt nạ so với kế hoạch. Vì vậy chẳng những đã làm vượt mức 170 chiếc mặt nạ mà còn hoàn thành công việc sớm hơn dự định một ngày. Hỏi theo kế hoạch, mỗi ngày cơ sở đó dự định sản xuất bao nhiêu chiếc mặt nạ? + Một hình trụ có diện tích toàn phần gấp hai lần diện tích xung quanh. Biết bán kính đáy hình trụ là 6cm. Tính thể tích hình trụ. + Cho Parabol (P): y = x2 và đường thẳng (d): y = (m – 1)x + m + 4 (tham số m). a) Chứng tỏ rằng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi giá trị của m. b) Gọi x1, x2 lần lượt là hoành độ giao điểm của (d) và (P). Tìm giá trị của m để.
Đề thi cuối học kỳ 2 Toán 9 năm 2020 - 2021 sở GDĐT Bắc Ninh
Sáng thứ Năm ngày 29 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề thi cuối học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT Bắc Ninh gồm 02 phần: phần trắc nghiệm gồm 03 trang với 40 câu, chiếm 04 điểm, thời gian làm bài 50 phút; phần tự luận gồm 01 trang với 04 câu, chiếm 06 điểm, thời gian làm bài 70 phút.
Đề thi cuối học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Mê Linh - Hà Nội
Đề thi cuối học kỳ 2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT Mê Linh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi cuối học kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Thanh Xuân - Hà Nội
Thứ Tư ngày 28 tháng 04 năm 2021, phòng Giáo dục và Đào tạo quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi cuối học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi là 52 mét. Nếu tăng chiều dài thêm 2 mét và giảm chiều rộng đi 3 mét thì diện tích mảnh vườn giảm 34 m. Tính chiều dài và chiều rộng ban đầu của mảnh vườn đó. + Người ta thiết kế một chiếc đèn thả bằng nhôm như hình bên. Phần chụp đèn là một hình nón có đường kính đáy là 24 cm, độ dài đường sinh là 30 cm. Tính diện tích nhôm cần dùng để làm một chiếc chụp đèn như vậy. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx – m + 2 và parabol (P): y = x^2. a) Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ thỏa mãn.