Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Gia Thiều Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF Ngày … tháng 12 năm 2020, Tổ Toán – Tin trường THPT Nguyễn Gia Thiều, quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Gia Thiều – Hà Nội được biên soạn theo hình thức đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 28 câu, chiếm 70% số điểm, phần tự luận gồm 03 câu, chiếm 30% số điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Gia Thiều – Hà Nội : + Cho hình chóp S.MNHK có O là giao điểm hai đường chéo MH, NK và E là trung điểm cạnh SK. Khẳng định nào dưới đây sai? A. Điểm M thuộc mặt phẳng (SOH). B. Điểm N thuộc mặt phẳng (MHK). C. Đường thẳng ME nằm trong mặt phẳng (SNK). D. Đường thẳng NE nằm trong mặt phẳng (SOK). + Phần TNKQ của đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 trường mình gồm 28 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án trả lời đúng, mỗi câu trả lời đúng được 0,25 điểm, trả lời sai không được điểm. Một học sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án trả lời ở mỗi câu. Xác suất để học sinh đó được 5 điểm phần TNKQ là? + Cho đường thẳng d, với mỗi điểm M, ta xác định M’ là hình chiếu vuông góc của M trên d thì ta được một phép biến hình, gọi là phép chiếu vuông góc lên đường thẳng d. Xét đường thẳng d không cắt đường tròn (I;r). Ảnh của đường tròn (I;r) qua phép chiếu vuông góc lên đường thẳng d là hình nào dưới đây? A. Đường tròn. B. Đường thẳng qua I song song d. C. Đoạn thẳng. D. Đường thẳng qua I vuông góc d.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ngẫu nhiên đồng thời 4 quả. Tính xác suất sao cho: a) Bốn quả lấy ra cùng màu. b) Có ít nhất một quả màu trắng. + Cho cấp số cộng (un) biết u4 = 10; u7 = 19. a) Tìm số hạng đầu và công sai của cấp số cộng. b) Tính tổng của 50 số hạng đầu. + Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD. Tìm giao điểm của SC và mặt phẳng (ABM).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Bạn Danh viết ngẫu nhiên lên bảng 4 số tự nhiên khác nhau thuộc [1;19]. Tính xác suất để bốn số được viết ra có tổng là một số chẵn. + Một cấp số cộng có 10 số hạng. Biết rằng tổng số hạng đầu và số hạng cuối bằng 30, tổng số hạng thứ ba và thứ sáu bằng 35. Số hạng thứ bảy của cấp số cộng là bao nhiêu. + Cho hình chóp S.ABC, gọi M, N lần lượt là trọng tâm của tam giác SAB, tam giác SBC. Gọi I là trung điểm của AC. a) Xác định giao tuyến của (BMN) và (SAC). b) Tìm giao điểm J của đường thẳng SB và mặt phẳng (IMN).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THCS & THPT Trí Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THCS & THPT Trí Đức – TP HCM : + Trong một hộp có 4 bi xanh khác nhau, 6 bi đỏ khác nhau, 8 bi vàng khác nhau. Có bao nhiêu cách chọn ra 4 bi gồm 2 bi xanh, 1 bi đỏ, 1 bi vàng? + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. + Một xưởng may áo khoác tháng đầu tiên may được 365 chiếc áo. Nhờ không ngừng cải tiến kỹ thuật, gia tăng sản xuất nên kể từ tháng thứ hai, mỗi tháng đều sản xuất được nhiều hơn tháng kề trước đó 50 chiếc. Tính tổng số áo khoác mà xưởng may được sau 36 tháng hoạt động?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Trần Văn Giàu - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Trần Văn Giàu, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Trần Văn Giàu – TP HCM : + Trên một kệ sách có 8 cuốn sách Toán, 7 cuốn sách Văn và 5 cuốn sách tiếng Anh. Chọn ngẫu nhiên 5 cuốn sách trên kệ. Tính xác suất để 5 cuốn sách được chọn: a) Cùng một loại sách. b) Có đủ ba loại sách và số sách Toán có ít nhất là 2 cuốn. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và CD. a/ Tìm giao tuyến của (SMN) với (SAC). b/ Gọi P là trung điểm cạnh SA. Chứng minh (SBC) song song (MNP). c/ Gọi G1, G2 lần lượt là trọng tâm của ΔABC và ΔSBC. Chứng minh: G1G2 // (SAB). + Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}, có bao nhiêu số tự nhiên không chia hết cho 2 có 5 chữ số khác nhau lập từ tập A?