Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, hướng dẫn phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp, giúp học sinh học tốt chương trình Toán 8. A. TÓM TẮT LÍ THUYẾT Khi phân tích đa thức thành nhân tử, nếu cần ta phải phối hợp nhiều phương pháp để phân tích được triệt để. Các phương pháp thông thường: + Phương pháp ưu tiên số một là đặt nhân tử chung. + Phương pháp ưu tiên số hai là dùng hằng đẳng thức. + Cuối cùng là nhóm các hạng tử. Mục đích của việc nhóm các hạng tử nhằm làm cho quá trình phân tích đa thức thành nhân tử được tiếp tục bằng cách đặt nhân tử chung hoặc dùng hằng đẳng thức. Ngoài ra, ta còn có thể sử dụng các phương pháp nâng cao sau: + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp đổi biến. B. CÁC DẠNG TOÁN DẠNG 1 . Phối hợp các phương pháp thông thường. + Một số bài toán, nếu chỉ áp dụng một phương pháp thì ta không thể phân tích thành nhân tử được vì vậy ta phải kết hợp hai hoặc cả ba phương pháp đã nêu. + Khi phối phợp nhiều phương pháp, thông thường phương pháp đặt nhân tử chung được ưu tiên đầu tiên rồi đến nhóm hạng tử và hằng đẳng thức, một phương pháp có thể dùng nhiều lần. DẠNG 2 . Phương pháp tách một hạng tử thành nhiều hạng tử. + Tách các hạng tử của đa thức thành tổng hoặc hiệu của nhiều hạng tử, từ đó ta ghép cặp để được các nhóm hạng tử giống nhau và làm xuất hiện nhân tử chung. + Cách tổng quát để phân tích đa thức bậc hai ax2 + bx + c thành nhân tử là: • Tách bx thành b1x + b2x sao cho b1·b2 = ac. • Đặt nhân tử chung theo từng nhóm. + Đối với đa thức bậc ba trở lên thì tùy theo đặc điểm của các hệ số mà có cách tách riêng cho phù hợp. Một thủ thuật của loại này là dùng máy tính cầm tay nhẩm một nghiệm (thường là nghiệm nguyên, giả sử là x0), khi đó ta tìm cách ghép cặp làm sao cho xuất hiện nhân tử (x − x0) là được. DẠNG 3 . Phương pháp thêm bớt cùng một hạng tử. Khi phân tích đa thức thành nhân tử, đôi khi ta cần tăng thêm các hạng tử của đa thức bằng cách thêm và bớt cùng một hạng tử. Có hai cách thêm bớt thương gặp như sau: + Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương. + Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung. DẠNG 4 . Phương pháp đổi biến. + Khi gặp một đa thức phức tạp, ta nên dùng cách đặt ẩn phụ (thay một đa thức của biến cũ bằng một biến mới để được một đa thức đơn giản hơn, dễ phân tích hơn). + Sau khi phân tích với biến mới, ta thay trở lại biến cũ để phân tích tiếp (nếu được). DẠNG 5 . Tìm x thỏa một đẳng thức cho trước. Một tích bằng 0 khi một trong các nhân tử của nó bằng 0. Ta thực hiện theo các bước sau: + Chuyển tất cả sang vế trái để vế phải bằng 0. + Phân tích đa thức thành nhân tử để đưa về dạng tích. + Cho một trong các nhân tử bằng 0 và tìm x.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép chia các phân thức đại số
Nội dung Chuyên đề phép chia các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép chia các phân thức đại số Chuyên đề phép chia các phân thức đại số Tài liệu này bao gồm 13 trang, tập trung vào việc giải thích cách chia các phân thức đại số. Nó tóm tắt những kiến thức cốt lõi mà bạn cần phải đạt được, cung cấp hướng dẫn cụ thể về cách giải các dạng toán khác nhau, và chứa một loạt các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Trên cơ sở lý thuyết, chúng ta sử dụng các quy tắc chia phân thức để thực hiện phép tính. Ví dụ, chia A/B cho C/D tương đương với nhân A/B với nghịch đảo của C/D, với điều kiện C/D khác không. Luôn lưu ý tính toán từ trái sang phải khi có nhiều phân thức trong phép chia. Bài tập cũng tập trung vào việc tìm phân thức thỏa mãn đẳng thức cho trước. Để giải bài toán này, ta cần đưa phân thức cần tìm về riêng một vế và sử dụng quy tắc nhân và chia phân thức để suy ra kết quả cuối cùng. Các bài toán nâng cao trong tài liệu cũng đề cập đến các trường hợp phức tạp hơn, thách thức hơn đối với học sinh. Tuy nhiên, bằng cách tự tin áp dụng kiến thức đã học, bạn sẽ có thể giải quyết chúng một cách mạch lạc. Với đáp án và lời giải chi tiết, tài liệu này không chỉ là một công cụ học tập hữu ích mà còn là người bạn đồng hành đáng tin cậy trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chuyên đề phép nhân các phân thức đại số
Nội dung Chuyên đề phép nhân các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép nhân các phân thức đại số Chuyên đề phép nhân các phân thức đại số Tài liệu này bao gồm 11 trang, tập trung vào việc giải thích lý thuyết quan trọng cần hiểu, cung cấp các dạng toán và hướng dẫn cách giải, đồng thời chọn lọc bài tập từ dễ đến khó trong chuyên đề phép nhân các phân thức đại số. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tiếp cận và hiểu rõ hơn về chương trình Đại số 8 chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Trong phần này, tóm tắt các lý thuyết quan trọng như quy tắc nhân phân thức để áp dụng vào việc giải các bài toán. II. Bài tập và các dạng toán: Dạng 1: Sử dụng quy tắc nhân để thực hiện phép tính, vận dụng quy tắc đã học vào bài toán cụ thể. Dạng 2: Tính toán bằng cách kết hợp các quy tắc đã học như quy tắc cộng, trừ và nhân. Có thể áp dụng quy tắc nhân đối với nhiều phân thức, ưu tiên tính toán biểu thức trong dấu ngoặc trước (nếu có). Tài liệu này được thiết kế để giúp học sinh hiểu và áp dụng phép nhân các phân thức đại số một cách linh hoạt và chính xác trong quá trình học tập.
Chuyên đề phép trừ các phân thức đại số
Nội dung Chuyên đề phép trừ các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép trừ các phân thức đại số Chuyên đề phép trừ các phân thức đại số Chuyên đề này bao gồm 21 trang tài liệu, tập trung vào việc truyền đạt lý thuyết cơ bản về phân dạng và cách giải các dạng toán liên quan đến phép trừ các phân thức đại số. Tài liệu cũng tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong việc giải các bài toán thuộc chương trình Đại số 8, chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Phân thức đối. Quy tắc trừ hai phân thức đại số. II. Bài tập và các dạng toán: Dưới đây là một số dạng toán thường gặp: Dạng 1: Thực hiện phép tính trừ với các phân thức đại số. Áp dụng quy tắc trừ các phân thức đại số. Thực hiện phép cộng các phân thức đại số. Dạng 2: Tìm phân thức thỏa mãn yêu cầu. Đưa phân thức cần tìm về dạng riêng. Sử dụng quy tắc cộng, trừ phân thức để tìm ra đáp án. Dạng 3: Giải toán sử dụng phép trừ các phân thức đại số. Thiết lập biểu thức theo yêu cầu của đề bài. Sử dụng quy tắc cộng, trừ phân thức để giải toán. III. Phiếu bài tập tự luyện: Những dạng bài tập tự luyện sau sẽ giúp bạn rèn luyện kỹ năng thêm: Tìm phân thức đối của một phân thức. Trừ các phân thức cùng mẫu thức. Trừ các phân thức không cùng mẫu thức. Chứng minh đẳng thức. Biểu diễn đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Nội dung Chuyên đề phép cộng các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép cộng các phân thức đại số Chuyên đề phép cộng các phân thức đại số Tài liệu này bao gồm 14 trang chi tiết về cách thức cộng các phân thức đại số. Nội dung tập trung vào việc tóm tắt lý thuyết quan trọng, phân dạng và hướng dẫn giải các dạng toán liên quan đến phép cộng phân thức đại số. Bên cạnh đó, tài liệu cũng cung cấp một loạt các bài tập từ cơ bản đến nâng cao để học sinh thực hành, kèm theo đáp án và lời giải chi tiết. Phần tóm tắt lý thuyết trong tài liệu giải thích hai quy tắc quan trọng khi cộng các phân thức: cộng hai phân thức cùng mẫu thức và cộng hai phân thức khác mẫu thức. Bằng cách giải thích rõ ràng và dễ hiểu, học sinh có thể nắm vững cách thức thực hiện các phép tính này. Bên cạnh đó, tài liệu cũng trình bày các dạng toán phổ biến liên quan đến phép cộng phân thức. Từ việc cộng xác phân thức thông thường đến tính giá trị biểu thức tổng các phân thức đại số, học sinh sẽ được hướng dẫn cụ thể từng bước để giải quyết các loại bài tập này. Cuối cùng, tài liệu cũng cung cấp các bài tập giải toán đố thú vị để học sinh áp dụng kiến thức về phép cộng phân thức vào thực tế. Điều này giúp học sinh hiểu rõ hơn về ứng dụng của phân thức đại số trong các tình huống thực tế.