Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 - 2019 sở GDĐT Bình Định
Thứ Hai ngày 18 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 giỏi môn Toán để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9 của tỉnh Bình Định, tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, các em được chọn chính là những tấm gương tiêu biểu trong phong trào học tập của tỉnh nhà. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định gồm 04 bài toán tự luận, học sinh làm bài thi trong thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định : + Trong mặt phẳng cho 8073 điểm mà diện tích của mọi tam giác với các đỉnh là các điểm đã cho không lớn hơn 1. Chứng minh rằng trong số các điểm đã cho có thể tìm được 2019 điểm nằm trong hoặc trên cạnh của một tam giác có diện tích không lớn hơn 1. [ads] + Cho tam giác nhọn ABC vuông cân tại A. Gọi D là trung điểm của cạnh BC. Lấy điểm M bất kỳ trên đoạn AD (M không trùng với A). Gọi N, P theo thứ tự là hình chiếu vuông góc của M trên các cạnh AB, AC và H là hình chiếu vuông góc của N lên đường thẳng PD. a) Chứng minh rằng: AH vuông góc với BH. b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I. Chứng minh ba điểm H, N, I thẳng hàng. + Cho tam giác ABC nội tiếp đường tròn (O), đường cao AH. Gọi M là giao điểm của AO và BC. Chứng minh rằng HB/HC + MB/MC ≥ 2AB/AC. Dấu bằng xảy ra khi nào?
Đề thi học sinh giỏi Toán 9 năm học 2018 - 2019 sở GDĐT Bắc Ninh
THCS. giới thiệu đến bạn đọc đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh, đề gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh : + Cho hàm số y = (m^2 – 4m – 4)x + 3m – 2 có đồ thị là d. Tìm tất cả các giá trị của m để đường thẳng d cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB có diện tích là 1 cm2 (O là gốc tọa độ, đơn vị đo trên các trục là cm). + Trong kì thi Olympic có 17 học sinh thi môn Toán được mang số báo danh là số tự nhiên trong khoảng từ 1 đến 1000. Chứng minh rằng có thể chọn ra 9 học sinh thi Toán có tổng các số báo danh được mang chia hết cho 9. [ads] + Cho tam giác ABC nội tiếp trong đường tròn (O) (AB < AC) và đường cao AD. Vẽ đường kính AE của đường tròn (O). a) Chứng minh rằng AD.AE = AB.AC. b) Vẽ dây AF của đường tròn (O) song song với BC, EF cắt AC tại Q, BF cắt AD tại P. Chứng minh rằng PQ song song với BC. c) Gọi K là giao điểm của AE và BC. Chứng minh rằng: AB.AC – AD.AK = √BD.BK.CD.CK.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 17/03/2019, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 9 THCS năm 2018 - 2019 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Quảng Trị.