Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc bao gồm 02 phần chính: phần trắc nghiệm và phần tự luận. Phần trắc nghiệm có 04 câu hỏi, chiếm 02 điểm. Phần tự luận có 04 câu hỏi, chiếm 08 điểm. Thời gian làm bài thi là 120 phút. Trích đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc: Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt thoả mãn điều kiện: (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. Một đội xe hàng ngày chở 140 tấn hàng, nhưng vượt mức 5 tấn mỗi ngày. Với việc vượt mức này, họ hoàn thành kế hoạch trước 1 ngày và chở thêm 10 tấn hàng. Hỏi số ngày dự kiến theo kế hoạch là bao nhiêu? Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC đến (O), và kẻ đường kính BD của đường tròn. Đường thẳng đi qua O vuông góc với đường AD và cắt AD, BC tại K, E. Chứng minh rằng các tứ giác ABOC, AIKE đều nội tiếp đường tròn, OI.OA = OK.OE, và tính độ dài đoạn thẳng BE khi biết OA = 5 cm, R = 3cm. Đề tuyển sinh này đưa ra các vấn đề khá phức tạp và đòi hỏi sự logic, kiến thức và kỹ năng tính toán từ phía thí sinh. Hy vọng các thí sinh sẽ tự tin và tỏa sáng trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà - Hải Phòng lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà – Hải Phòng lần 1 gồm 5 câu tự luận. Trích một số bài toán trong đề: + Chào mừng Lễ hội Hoa phượng đỏ năm 2017. Hội mĩ thuật Hải Phòng thiết kế một Pano quảng cáo có dạng là một hình chữ nhật. Hình chữ nhật đó có chu vì bằng 68 m và diện tích bằng 273 m2. Em hãy cho biết kích thước của tấm Pano quảng cáo hình chữ nhật ở trên có đạt “Tỉ lệ vàng” hay không ? (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O; R) và dây BC cố định không đi qua tâm O. A là điểm bất kỳ trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại điểm H. [ads] a) Chứng minh các tứ giác HDBF, BCEF nội tiếp b) Chứng minh DA là phân giác của góc EDF c) Gọi K là điểm đối xứng của A qua tâm O. Chứng minh HK đi qua trung điểm của đoạn BC d) Giả sử góc BAC bằng 60 độ. Chứng minh tam giác AHO là tam giác cân
Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán
Nội dung Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bản PDF - Nội dung bài viết Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bộ tài liệu này bao gồm 32 trang với 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Trong số các đề thi có hướng dẫn giải chi tiết giúp cho việc học tập và ôn tập hiệu quả hơn.