Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 3 Toán 12 năm 2018 - 2019 trường Triệu Thái - Vĩnh Phúc

Vừa qua, trường THPT Triệu Thái (Lập Thạch, Vĩnh Phúc) đã tổ chức kỳ thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm tạo điều kiện để các em học sinh khối 12 của nhà trường được tiếp tục rèn luyện và củng cố các kiến thức Toán THPT, để các em có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc có mã đề 132 gồm 06 trang, đề được soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm bài thi KSCL Toán 12 trong thời gian 90 phút. [ads] Trích dẫn đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc : + Mảnh vườn nhà ông An có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Ông dùng 2 đường Parabol có đỉnh là tâm đối xứng của elip cắt elip tại 4 điểm M, N, P, Q như hình vẽ sao cho tứ giác MNPQ là hình chữ nhật có MN = 4 để chia vườn. Phần tô đậm dùng để trồng hoa và phần còn lại để trồng rau. Biết chi phí trồng hoa là 600.000 đồng/m2 và trồng rau là 50.000 đồng/m2. Hỏi số tiền phải chi gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 4m. + Trong kỳ thi chọn học sinh giỏi tỉnh Vĩnh Phúc có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6.t^2 với t ( giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi vật bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lần 2 lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Dương
Nội dung Đề khảo sát chất lượng lần 2 lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 2 môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào lúc 19h15 ngày 18 tháng 04 năm 2022 theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Trích dẫn đề khảo sát chất lượng lần 2 Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Cho đồ thị hai hàm số y = f(x) và y = g(x) như hình vẽ bên dưới. Biết đồ thị của hàm số y = f(x) là một Parabol đỉnh I có tung độ bằng -1/2 và y = g(x) là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là x1, x2, x3 thỏa mãn x1.x2.x3 = -6. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) gần nhất với giá trị nào dưới đây? + Từ một miếng tôn hình tròn bán kính 2m, người ta cắt ra một hình chữ nhật rồi uốn thành mặt xung quanh của một chiếc thùng phi hình trụ như hình vẽ bên dưới. Để thể tích thùng lớn nhất thì diện tích phần tôn bị cắt bỏ gần nhất với giá trị nào sau đây? + Cho lăng trụ ABC.A’B’C’ có thể tích là V. M N P là các điểm lần lượt nằm trên các cạnh AM 1 BN AA’ 3′ BB’ СР AA’ BB’ CC’ sao cho x y. Biết thể tích khối đa diện ABC.MNP CC 2V bằng? Giá trị lớn nhất của x.y bằng?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hà Nội
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hà Nội; kỳ thi được diễn ra vào chiều thứ Sáu ngày 22 tháng 04 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hà Nội : + Cắt một khối trụ có chiều cao 5 dm bởi một mặt phẳng vuông góc với trục thì được hai khối trụ mới có tổng diện tích toàn phần nhiều hơn diện tích toàn phần của khối trụ ban đầu là 187 dm². Tổng diện tích toàn phần của hai khối trụ mới bằng? + Một phòng thi có 24 thí sinh trong đó có 18 thí sinh nam, 6 thí sinh nữ. Cán bộ coi thi chọn ngẫu nhiên 2 thí sinh chứng kiến niêm phong bì đề thi. Xác suất để chọn được 1 thí sinh nam và 1 thí sinh nữ bằng? + Trong không gian Oxyz, cho điểm M(1;2;3). Đường thẳng d đi qua điểm M, d cắt tia Ox tại A và cắt mặt phẳng (Oyz) tại B sao cho MA = 2MB. Độ dài đoạn thẳng AB bằng?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Bản PDF Chiều thứ Sáu ngày 21 tháng 01 năm 2022, sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2021 – 2022, nhằm chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông 2022 do Bộ Giáo dục và Đào tạo tổ chức. Đề khảo sát chất lượng môn Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh mã đề 106 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124.
Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 132); kỳ thi được diễn ra vào thứ Sáu ngày 08 tháng 04 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hàm bậc bốn y f x có đạo hàm liên tục trên hàm số y f x có đồ thị như hình vẽ. Gọi S là tập các giá trị nguyên của tham số m để hàm số y f x m 4 2 6 có đúng 3 điểm cực tiểu. Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 2 5 24 cắt mặt phẳng 4 0 x y theo giao tuyến là đường tròn C. Điểm M thuộc C sao cho khoảng cách từ M đến A 4 12 1 nhỏ nhất có tung độ bằng? + Cho hình nón có chiều cao bằng 2 a. Cắt bởi một mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng a ta được thiết diện có diện tích bằng 2 4 11 3 a. Thể tích của khối nón đã cho bằng?