Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM

Nội dung Đề cuối học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề cuối học kỳ 2 Toán lớp 9 năm 2022 - 2023 Đề cuối học kỳ 2 Toán lớp 9 năm 2022 - 2023 Chào mừng đến với bài kiểm tra cuối học kỳ 2 môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh! Đề thi bao gồm 01 trang với 07 bài toán hình thức tự luận, thời gian làm bài 90 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào sáng thứ Tư ngày 19 tháng 04 năm 2023. Một trong những bài toán trong đề thi là về lực F của gió khi thổi vuông góc vào cánh buồm, được tính bằng công thức F = 4v². Học sinh sẽ phải tính lực F khi vận tốc của gió là 20 m/s và xác định xem chiếc thuyền buồm có thể ra khơi hay không khi vận tốc gió là 90 km/h. Bài toán khác liên quan đến thể tích hình trụ, học sinh cần tính chiều cao của mẫu lon nước mới có đường kính đáy là 5.74 cm. Công thức tính thể tích hình trụ sẽ giúp họ giải quyết bài toán này. Cuối cùng, học sinh sẽ phải chứng minh các tính chất của tam giác và đường tròn trong bài toán về tam giác ABC nội tiếp đường tròn (O). Qua đó, họ sẽ học được cách chứng minh và áp dụng các kiến thức về hình học trong đề thi này. Đề thi sẽ đi kèm đáp án và hướng dẫn chấm điểm để giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán của mình. Chúc các em học sinh lớp 9 thành công trong kỳ thi này!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 9 năm 2019 - 2020 trường THCS Bế Văn Đàn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học kì 2 Toán 9 năm học 2019 – 2020 trường THCS Bế Văn Đàn – Hà Nội. Trích dẫn đề thi học kì 2 Toán 9 năm 2019 – 2020 trường THCS Bế Văn Đàn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trong tháng 3 tổng số tiền điện và nước của nhà ông Hùng phải trả là 600 nghìn đồng. Sang tháng 4 ông Hùng thay hệ thống đèn chiếu sáng cũ bằng hệ thống đèn LED tiết kiệm điện nên số tiền điện trong tháng 4 của gia đình ông giảm 15% so với tháng 3. Nhưng số tiền nước trong tháng 4 lại tăng 5% so với tháng 3. Nên tổng số tiền điện và nước trong tháng 4 của gia đình ông Hùng là 534 nghìn đồng. Hỏi trong tháng 3 gia đình nhà ông Hùng phải trả bao nhiêu tiền điện và bao nhiêu tiền nước. [ads] + Một quả bóng làm bằng đá hình cầu có thể tích là 288pi (dm3). Tính diện tích da để làm ra quả bóng đó (lấy pi = 3,14) và làm tròn đến chữ số thập phân thứ ba (không kể các mép nối). + Trên mặt phẳng Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -x + 4. a) Với m = 3, tìm tọa độ các giao điểm của (d) và (P). b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn điều kiện x1 = -2×2.
Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Nguyễn Du - TP HCM
Thứ Ba ngày 02 tháng 06 năm 2020, trường THCS Nguyễn Du, quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 2 (HK2) năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM : + Hai trường THCS A và B có tất cả 1250 thí sinh dự thi vào lớp 10 THPT. Biết rằng nếu tỉ lệ trúng tuyển vào lớp 10 của trường A và trường B lần lượt là 80% và 85% thì trường A trúng tuyển nhiều hơn trường B là 10 thí sinh. Tính số thí sinh dự thi vào lớp 10 THPT của mỗi trường. [ads] + Đổ nước vào một chiếc thùng hình trụ có bán kính 20cm. Nếu nghiêng thùng sao cho mặt nước chạm miệng thùng và đáy thùng (như hình vẽ) thì mặt nước tạo với đáy thùng một góc ACB = 45°. Em hãy cho biết diện tích xung quanh và thể tích của thùng (thể tích tính theo lít) (biết hình trụ có bán kính đáy là R, chiều cao h thì diện tích xung quanh được tính bởi công thức Sxq = 2Rh và thể tích V được tính bởi công thức V = piR^2h với pi = 3,14). + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a. Chứng minh rằng các tứ giác BFEC, CEHD nội tiếp đường tròn. b. Đường thẳng EF cắt đường tròn (O) tại các điểm I, K (I thuộc cung nhỏ AB). Gọi xy là tiếp tuyến tại A của đường tròn (O). Chứng minh: OA vuông góc với IK và AK^2 = AE.AC. c. Gọi S là tâm đường tròn ngoại tiếp tứ giác BFEC. Qua S vẽ đường vuông góc với HS, đường thẳng này cắt các đường thẳng AB, AH, AC lần lượt tại P, G và Q. Chứng minh: G là trung điểm của PQ.
Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 phòng GDĐT Cầu Giấy - Hà Nội
Thứ Năm ngày 04 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 (HK2) môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 05 bài toán, đề thi gồm có 01 trang, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đoàn xe vận tải dự định sử dụng một số xe cùng loại để chuyên chở 90 tấn thiết bị y tế. Để đáp ứng kịp nhu cầu phục vụ công tác phòng chống dịch Covid-19 đoàn được bổ sung thêm 5 chiếc xe cùng loại. Do đó mỗi xe chở ít hơn dự định ban đầu là 0,2 tấn. Biết khối lượng hàng mỗi xe chuyên chở như nhau, hỏi ban đầu đoàn xe có bao nhiêu chiếc? [ads] + Một lọ thuốc hình trụ có chiều cao 10cm và bán kính đáy 5cm. Nhà sản xuất phủ kín mặt xung quanh của lọ thuốc bằng giấy in các thông tin về loại thuốc đó. Hãy tính diện tích phần giấy cần dùng của lọ thuốc đó (cho biết độ dày của giấy in và lọ thuốc không đáng kể)? + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Các đường cao BD và CE cắt nhau tại H. 1) Chứng minh ADHE là tứ giác nội tiếp. 2) Kẻ đường kính AK. Chứng minh CK // BH và tứ giác BHCK là hình bình hành. 3) Gọi I là trung điểm của BC, G là giao điểm của AI và OH. a. Chứng minh G là trọng tâm tam giác AHK. b. Cho B, C cố định, khi A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn thì G chuyển động trên đường nào? Tại sao?
Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 phòng GDĐT Hoàng Mai - Hà Nội
Thứ Năm ngày 04 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hoàng Mai, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội gồm 05 bài toán dạng tự luận, đề thi có 01 trang, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội : + Quãng đường AB dài 6km. Một người đi xe đạp từ A đến B với vận tốc không đổi. Khi từ B trở về A người đó giảm vận tốc 3km/h so với lúc đi từ A đến B. Biết thời gian lúc đi ít hơn thời gian lúc về là 6 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. [ads] + Một hộp sửa hình trụ có chiều cao là 12cm, bán kính đáy là 4cm như hình vẽ bên. Tính diện tích vật liệu cần dùng để tạo nên vỏ hộp sữa đó (không tính phần ghép nối). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường kính AD của đường tròn (O). Tiếp tuyến tại điểm D của đường tròn (O) cắt đường thẳng BC tại điểm K. Tia KD cắt AB tại điểm M, cắt AC tại điểm N. Gọi H là trung điểm của đoạn thẳng BC. 1) Chứng minh CBD = CDK và KD^2 = KB.KC. 2) Chứng minh tứ giác OHDK nội tiếp và AON = BHD. 3) Chứng minh OM = ON.