Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình bình hành

Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình bình hành, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình bình hành là tứ giác có các cặp cạnh đối song song. Tính chất: Trong hình bình hành: + Các cạnh đối bằng nhau. + Các góc đối bằng nhau. + Hai đường chéo cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có các cạnh đối song song là hình bình hành. + Tứ giác có các cạnh đối bằng nhau là hình bình hành. + Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành. + Tứ giác có các góc đối bằng nhau là hình bình hành. + Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình bình hành. + Dạng 2. Chứng minh tứ giác là hình bình hành. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành. + Dạng 3. Chứng minh ba điểm thẳng hàng, các đường thẳng đồng quy. B. PHIẾU BÀI TỰ LUYỆN CB – NC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tứ giác
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tứ giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN Dạng 1. Tính số đo góc. Dạng 2. Tìm mối liên hệ giữa các cạnh, đường chéo của tứ giác. Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1. Tính số đo góc. Dạng 2. So sánh các độ dài. Dạng 3. Bài toán giải bằng phương trình tô màu. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết
Tài liệu gồm 183 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án và lời giải chi tiết, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn tài liệu tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết: + Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. + Tiểu sử của nhà toán học cố đại nổi tiếng Diophante (Đi – ô – phăng) được tóm tắt trên bia mộ của ông như sau: Hỡi người qua đường! Đây là nơi chôn cất di hài của Diophante, người mà một phần sáu cuộc đời là tuổi niên thiếu huy hoàng; một phần mười hai cuộc đời nữa trôi qua, trên cằm đã mọc râu lún phún. Diophante lấy vợ, một phần bảy cuộc đời trong cảnh vợ chồng hiếm hoi. Năm năm trôi qua, ông sung sướng khi có cậu con trai đầu lòng khôi ngô. Nhưng cậu ta chỉ sống được bằng nửa cuộc đời đẹp đẽ của cha. Rút cục thì với nỗi buồn thương sâu sắc, ông chỉ sống thêm được 4 năm nữa từ sau khi cậu ta lìa đời”. Tính tuổi thọ của Diophante. + Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút nên để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.
Đề cương ôn tập học kì 1 Toán 8 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề cương ôn tập học kì 1 Toán 8 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội.
Chuyên đề phương trình chứa dấu giá trị tuyệt đối
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa dấu giá trị tuyệt đối, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. A. BÀI GIẢNG 1. Nhắc lại về giá trị tuyệt đối. 2. Giải phương trình chứa dấu giá trị tuyệt đối. Trong phạm vi kiến thức Toán 8 chúng ta sẽ chỉ quan tâm tới ba dạng phương trình chứa dấu giá trị tuyệt đối: + Dạng 1: Phương trình: |f(x)| = k với k là hằng số không âm. + Dạng 2: Phương trình |f(x)| = |g(x)|. + Dạng 3: Phương trình: |f(x)| = g(x). B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng toán 1: Phá dấu trị tuyệt đối. + Dạng toán 2: Giải phương trình dạng |f(x)| = k với k là hằng số không âm. + Dạng toán 3: Giải phương trình dạng |f(x)| = |g(x)|. + Dạng toán 4: Giải phương trình dạng |f(x)| = g(x).