Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2017 2018 trường THCS Lê Quý Đôn Hà Nội lần 2

Nội dung Đề KSCL lớp 9 môn Toán năm 2017 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút. Kỳ thi được tổ chức ngày 17/03/2018 nhằm giúp học sinh ôn tập, rèn luyện chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Bài toán mẫu trong đề KSCL Toán lớp 9: 1. Cho phương trình \(x^2 - (4m-1)x + 3m^2 - 2m = 0\) (x là ẩn) a) Giải phương trình khi m = 1 b) Tìm m sao cho phương trình có hai nghiệm x1, x2 thỏa mãn \(x_1^2 + x_2^2 = 7\) 2. Giải bài toán: "Hai người cùng làm chung một công việc thì sau 3 giờ 36 phút làm xong. Nếu làm một mình thì người thứ nhất hoàn thành công việc sớm hơn người thứ hai là 3 giờ. Hỏi nếu mỗi người làm một mình thì sau bao lâu xong công việc." 3. Trong tam giác vuông \(MAB\) tại \(M\), \(MB < MA\). Kẻ \(MH\) vuông góc với \(AB\). \(O\) là trung điểm của \(AB\), \(E\) và \(F\) lần lượt là giao điểm của đường tròn đường kính \(MH\) với \(MA\) và \(MB\). Chứng minh rằng tứ giác \(MEHF\) là hình chữ nhật và tứ giác \(AEFB\) nội tiếp. 4. Đường thẳng \(EF\) cắt đường tròn ngoại tiếp tam giác \(MAB\) tại \(P\) và \(Q\). Chứng minh tam giác \(MPQ\) cân và ba điểm \(M\), \(I\), \(K\) thẳng hàng. Đề KSCL Toán lớp 9 năm 2017 - 2018 trường THCS Lê Quý Đôn Hà Nội lần 2 đầy đủ, đa dạng về nội dung và phân loại các dạng bài tập khác nhau, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, logic và khả năng suy luận.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lớp 9 môn Toán lần 2 năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh
Nội dung Đề khảo sát lớp 9 môn Toán lần 2 năm 2021 2022 phòng GD ĐT thành phố Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh Đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 phòng GD&ĐT thành phố Bắc Ninh bao gồm 40 câu trắc nghiệm trải qua 04 trang, thời gian làm bài là 50 phút. Dưới đây là một số ví dụ câu hỏi trong đề khảo sát: + Cho tam giác ABC vuông tại A, đường cao AH có độ dài AC cm và BC cm là 4 và 5. Hỏi độ dài cạnh AB là bao nhiêu? + Trong tam giác ABC vuông tại A, đường cao AH, với AB cm và BH cm lần lượt là 6 và 4. Biết cạnh BC bằng bao nhiêu? + Biết ABC là tam giác vuông tại A, với đường cao AH, diện tích ABH và ACH lần lượt là 54cm và 96cm. Tính độ dài BC. + Tại tam giác ABC vuông tại A, AB/AC = 3/4 và đường cao AH có độ dài 9cm. Hỏi đoạn thẳng HC bằng bao nhiêu? + Cho P(x) = x^2 - x + 1. Tìm giá trị nhỏ nhất của biểu thức P(2022x). Đây chỉ là một số câu hỏi trong đề khảo sát Toán lớp 9 lần 2 năm 2021 - 2022 của phòng GD&ĐT thành phố Bắc Ninh. Hy vọng các em học sinh sẽ làm tốt và đạt kết quả cao trong bài kiểm tra này. Chúc các em may mắn!
Đề khảo sát lớp 9 môn Toán tháng 10 năm học 2021 2022 trường THCS Nam Từ Liêm Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán tháng 10 năm học 2021 2022 trường THCS Nam Từ Liêm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội Đề khảo sát Toán lớp 9 tháng 10 năm học 2021 - 2022 tại trường THCS Nam Từ Liêm - Hà Nội bao gồm một trang cung cấp 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Đề khảo sát này yêu cầu học sinh giải các phương trình, tính giá trị của biểu thức, rút gọn biểu thức, tìm các số nguyên thỏa mãn điều kiện. Ngoài ra, đề cũng liên quan đến tam giác ABC vuông tại A, cung cấp các thông tin về đoạn thẳng, góc và các đường cao, đường trung tuyến trong tam giác. Bằng cách thực hiện các phép tính, kế hoạch rõ ràng và sử dụng kiến thức toán học cơ bản, học sinh sẽ có cơ hội thể hiện năng lực và hiểu biết của mình trong môn Toán.
Đề kiểm tra lớp 9 môn Toán tháng 10 năm 2021 trường THCS Archimedes Academy Hà Nội
Nội dung Đề kiểm tra lớp 9 môn Toán tháng 10 năm 2021 trường THCS Archimedes Academy Hà Nội Bản PDF - Nội dung bài viết Đề thi kiểm tra Toán lớp 9 - Tháng 10 năm 2021 - THCS Archimedes Academy - Hà Nội Đề thi kiểm tra Toán lớp 9 - Tháng 10 năm 2021 - THCS Archimedes Academy - Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi sắp tới, Sytu xin giới thiệu đến mọi người đề kiểm tra Toán lớp 9 tháng 10 năm 2021 tại trường THCS Archimedes Academy - Hà Nội. Đề thi được biên soạn theo hình thức 100% tự luận, gồm 05 bài toán trên 01 trang giấy. Thời gian làm bài là 90 phút. Đề thi sẽ giúp các em ôn tập và củng cố kiến thức Toán một cách hiệu quả, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và thành công trong kỳ thi sắp tới!
Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS THPT Newton Hà Nội
Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS THPT Newton Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS THPT Newton Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS THPT Newton Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 tại trường THCS&THPT Newton Hà Nội bao gồm một trang đề với năm bài toán dạng tự luận, thời gian làm bài là 90 phút. Trích dẫn đề khảo sát chất lượng môn Toán lớp 9 năm 2021-2022 tại trường THCS&THPT Newton Hà Nội: + Cho hai biểu thức A và B Tính giá trị biểu thức A khi x = 25. Chứng minh B. Tìm x để B < $\frac{3}{4}$. Cho P = A : B. Với giá trị nguyên nào của x thì P đạt giá trị nhỏ nhất, xác định giá trị nhỏ nhất đó. + Đài kiểm soát không lưu Nội Bài cao 95m. Ở một thời điểm nào đó vào ban ngày, mặt trời chiếu tạo bóng của Đài kiểm soát dài 200m trên mặt đất. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu? (Kết quả làm tròn đến độ). + Cho tam giác ABC vuông tại A, đường cao AH. Giả sử BH = 4cm; AB = 6cm. Xác định tâm và bán kính của đường tròn ngoại tiếp ABC. Qua B kẻ đường thẳng vuông góc với AB, cắt AH tại D. Chứng minh: Lấy một điểm O bất kì trong tam giác ABC, gọi M, N, P lần lượt là hình chiếu của điểm O trên cạnh BC, CA và AB. Hãy xác định vị trí điểm O để đạt giá trị nhỏ nhất.