Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Tại bể bơi hình chữ nhật ở VRC – Thành phố Vinh, bạn An thực hiện đo diện tích bể bơi bằng cách: An đi 1 vòng quanh bể bơi bằng cách đi sát mép bể bơi từ đầu đến cuối cạnh thứ nhất rồi đến cạnh thứ hai, cạnh thứ ba và hết cạnh thứ tư. Sau khi đi hết một vòng trở về điểm xuất phát ban đầu An thấy mình đã thực hiện 140 bước đi, số bước chân đi hết cạnh thứ hai nhiều hơn số bước chân đi hết cạnh thứ nhất là 30 bước. Biết chiều dài mỗi bước chân của An đi là như nhau và bằng 0,5 m. Hỏi diện tích bể bơi mà An đã đo được là bao nhiêu? + Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) (A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G. a) Chứng minh tứ giác AOBF nội tiếp b) Chứng minh I là trung điểm của KG c) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại P (P khác B). Chứng minh PM vuông góc với NB. + Giả sử phương trình 2 2 2 1 0 x x có 2 nghiệm 1 2 x x. Không giải phương trình đã cho, lập một phương trình bậc 2 ẩn y có các nghiệm là 1 2 1 1 x x 1 1.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên ĐH Vinh Nghệ An
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên ĐH Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh Nghệ An Đề thi tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh Nghệ An Cảm ơn mọi người đã quan tâm đến Đề thi tuyển sinh môn Toán năm học 2023-2024 của trường THPT chuyên Đại học Vinh, Nghệ An. Trong đề thi này, chúng ta sẽ cùng tìm hiểu và giải quyết các bài toán thú vị sau đây. 1. Bài toán đầu tiên liên quan đến đa thức P(x) = x2 + bx + c. Hãy tìm các hệ số b, c sao cho đa thức này có hai nghiệm nguyên và |c| < 16 và |P(9)| là số nguyên tố. 2. Bài toán thứ hai xoay quanh đường tròn (O) có đường kính AB. Chúng ta cần chứng minh rằng tứ giác CDNM là tứ giác nội tiếp, và sau đó tìm vị trí của đoạn thẳng BT sao cho độ dài nhỏ nhất. 3. Cuối cùng, bài toán thứ ba liên quan đến tập hợp số tự nhiên M có 2 chữ số khác nhau. Hãy tìm số nguyên dương k lớn nhất sao cho tồn tại tập hợp con A có k phần tử thuộc tập hợp M sao cho tích của các số trong A đều chia hết cho 3. Chúc các bạn học sinh giải quyết thành công các bài toán thú vị này và đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường PTNK – TP HCM: 1. Phần 1: Bài toán về việc tô màu các ô của bảng hình vuông 4 × 4 bằng màu đen hoặc trắng theo các điều kiện nhất định. 2. Phần 2: Giải bài toán liên quan đến số nguyên m, n thỏa mãn m2 − n = 1, với các yêu cầu cụ thể và chi tiết. 3. Phần 3: Bài toán về tam giác ABC, với nhiều yêu cầu phức tạp như chứng minh đường tròn ngoại tiếp tam giác ALH đi qua tâm nội tiếp I, chứng minh BAD = CAH, chứng minh KJ vuông góc EF, và chứng minh đồng quy của EF, IR và AS. Những bài toán này không chỉ đòi hỏi kiến thức chuyên sâu mà còn đề cao khả năng suy luận logic và khám phá của các thí sinh. Chúc các em học sinh sẽ giải quyết tốt các bài toán trong đề tuyển sinh này và đạt kết quả cao trong kỳ thi sắp tới.
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2023 - 2024 của trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 trường PTNK - TP HCM bao gồm các phần sau: Trong một chương trình làm từ thiện, các học sinh lớp 10 trường PTNK đã tổ chức phát tập cho các em học sinh của một trường tiểu học vùng sâu. Chương trình được chia làm ba đợt: lần 1 phát 120 quyển tập, lần 2 phát 160 quyển tập và lần 3 phát 315 quyển tập. Lần 1 có 5 em học sinh vắng mặt, lần 2 có 3 em học sinh vắng mặt, và lần 3 các em học sinh đều có mặt. Các em nhận được số tập ở lần 3 bằng tổng số tập nhận được ở hai lần đầu. Hãy tính số học sinh của trường tiểu học đó. Đề thi cũng có một bài toán về hình học: Tam giác ABC nhọn nội tiếp đường tròn (O; R). Hai tiếp tuyến của (O) tại B, C cắt nhau tại M. Đoạn MO cắt BC tại H và MA cắt (O) tại D (D khác A). Vẽ Ax là tiếp tuyến tại A của (O). a) Chứng minh rằng MB2 = MD.MA và tứ giác ADHO nội tiếp. b) Vẽ đường thẳng qua M song song Ax cắt AB, AC lần lượt tại P, Q. Chứng minh tam giác MBP cân và M là trung điểm của PQ. c) Chứng minh rằng AB.AP = AC.AQ và PAM = CAH. Hy vọng các em sẽ học tập và ôn tập thật kỹ trước khi bước vào kỳ thi quan trọng. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Xin chào quý thầy cô và các em học sinh! Viết đến đây, chúng ta sẽ cùng tìm hiểu về đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán và Tin học) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trong đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 của sở GD&ĐT Thái Bình, chúng ta sẽ gặp phải các bài toán thú vị như: Cho đa thức bậc ba \( P(x) \) thỏa mãn khi chia \( P(x) \) cho \( x - 1 \), \( x - 2 \), \( x - 3 \) đều được số dư là 6 và \( P(-1) = -18 \). Hãy tìm đa thức \( P(x) \). Trong tam giác vuông \( \triangle ABC \) tại \( A \) với \( AB = c \) và \( AC = b \), hãy tìm vị trí của đường thẳng \( d \) để diện tích tứ giác \( BDEC \) đạt giá trị lớn nhất, theo b, c. Chứng minh rằng nếu \( p \) là số nguyên tố lớn hơn 3 thì \( (7 - p)(7 + p) \) chia hết cho 24. Hy vọng rằng những kiến thức và kỹ năng mà các em đã học sẽ giúp các em tự tin và thành công khi giải các bài toán trong đề thi tuyển sinh năm nay. Chúc quý thầy cô và các em học sinh có một kỳ thi suôn sẻ và đạt kết quả cao!